Skip to main content

Advanced Technologies (Biological and Thermochemical) for Waste-to-Energy Conversion

  • Chapter
  • First Online:
Advanced and Emerging Technologies for Resource Recovery from Wastes

Abstract

This chapter reviews various technologies for waste to energy conversion. The advantages and disadvantages of each technology are discussed in this chapter. The effectiveness of a specific waste-to-energy process is determined based on the thermal potential of the waste, effectiveness of the system and the type of produced energy. The two main technologies for energy recovery from waste materials are thermochemical and biological conversions. Thermochemical conversion is defined as the decomposition of organic matters as a result of heating and/or oxidation of biomass and chemical reactions. It mainly includes combustion, gasification, pyrolysis and hydrothermal liquefaction. Combustion or incineration is an old and developed technology for the degradation of organics in the presence of oxygen. It can be performed as co-firing of biomass with coal for higher conversion efficiency and less fouling and corrosion problems compared to the combustion of biomass feedstock. Pyrolysis, defined as the decomposition of biomass in the absence of oxygen, produces syngas, liquid fuels and biochar. Hydrothermal liquefaction is another thermochemical process for the conversion of biomass to liquid fuels in the presence of water as the reaction medium. It involves a series of reactions, producing bio-crude oil, water-soluble products, solid residue and non-condensable gases as the main products. Another thermochemical process is gasification which involves the conversion of biomass into gaseous products using a gasifying agent. On the other hand, the biochemical conversion methods use microorganisms and enzymes in addition to heat and other chemicals to breakdown the biomass into gaseous or liquid fuels. Examples of biochemical conversions include anaerobic digestion, mechanical biological treatment and fermentation. Anaerobic digestion is the breakdown of biodegradable materials in the absence of oxygen. This process results in the reduction of volatile solids and the production of biogas that can be used to produce electricity and heat or cleaned and used as a natural gas substitute. Mechanical biological treatment is the integration of some of the waste management facilities such as materials recovery facilities (MRFs), composting and anaerobic digestion plants to recover recyclables and compost or digest the organic fraction of the waste through biological treatment. Fermentation involves the conversion of organic materials into bioethanol using various yeasts and microorganisms. Whereas, conversion of lignocellulosic biomass into ethanol is complex and expensive and there are still some challenges that limit its commercialization, e.g., the rigorous pre-treatments needed, the high cellulase costs and structural hindrances of lignin and hemicellulose, and high capital costs of such complex processes, etc. The biorefinery is a promising approach in which biomass such as lignocellulose could be converted into multiple high-valued biochemicals and biomaterials in addition to bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang C, Jia L, Chen C, Liu G, Fang W (2011) Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst. Bioresour Technol 102(6):4580–4584

    Article  CAS  PubMed  Google Scholar 

  2. Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel 87(3):335–345

    Article  CAS  Google Scholar 

  3. Yang Y, Gilbert A, Xu C (Charles) (2009) Production of bio-crude from forestry waste by hydro-liquefaction in sub-/super-critical methanol. AIChE J 55(3):807–819

    Google Scholar 

  4. Wen D, Jiang H, Zhang K (2009) Supercritical fluids technology for clean biofuel production. Prog Nat Sci 19(3):273–284

    Article  CAS  Google Scholar 

  5. Devi L (2005) Catalytic removal of biomass tars; olivine as prospective in-bed catalyst for fluidized-bed biomass gasifiers (Thesis). Technische Universiteit Eindhoven

    Google Scholar 

  6. Municipal Waste Integration Network/Recycling Council of Alberta (2006) Municipal solid waste (MSW) options: integrating organics management and residual treatment/disposal

    Google Scholar 

  7. Di Maria F, Sisani F, Contini S (2018) Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Appl Energy 230:1557–1572

    Article  Google Scholar 

  8. Demirbas A (2007) Combustion systems for biomass fuel. Energy Sources, Part A 29(4):303–312

    Article  CAS  Google Scholar 

  9. Demirbas A (2007) Combustion of biomass. Energy Sources, Part A 29(6):549–561

    Article  CAS  Google Scholar 

  10. Sadaka S, Johnson DM (2017) Biomass combustion. University of Arkansas, Devision of Agriculture

    Google Scholar 

  11. Zhang L, Xu C (Charles), Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51(5):969–982

    Google Scholar 

  12. Beyene HD, Werkneh AA, Ambaye TG (2018) Current updates on waste to energy (WtE) technologies: a review. Renew Energy Focus 24:1–11

    Article  Google Scholar 

  13. Makarichi L, Jutidamrongphan W, Anan Techato K (2018) The evolution of waste-to-energy incineration: a review. Renew Sustain Energy Rev 91:812–821

    Google Scholar 

  14. Suppes GJ, Storvick TS (2007) Production of electricity. In: Sustainable nuclear power

    Google Scholar 

  15. IEA Bioenergy Task 32 (2002) Biomass combustion and co-firing: an overview

    Google Scholar 

  16. Rover M, Smith R, Brown RC (2018) Enabling biomass combustion and co-firing through the use of Lignocol. Fuel 211:312–317

    Google Scholar 

  17. Priyanto DE et al (2017) Co-firing high ratio of woody biomass with coal in a 150-MW class pulverized coal boiler: properties of the initial deposits and their effect on tube corrosion. Fuel 208:714–721

    Article  CAS  Google Scholar 

  18. VGB PowerTech (2008) Advantages and limitations of biomass co-combustion in fossil fired power plants

    Google Scholar 

  19. Shan L et al (2018) Studies on combustion behaviours of single biomass particles using a visualization method. Biomass Bioenergy 109:54–60

    Google Scholar 

  20. Bozaghian M, Rebbling A, Larsson SH, Thyrel M, Xiong S, Skoglund N (2018) Combustion characteristics of straw stored with CaCO3 in bubbling fluidized bed using quartz and olivine as bed materials. Appl Energy 212:1400–1408

    Google Scholar 

  21. The U.S. Environmental Protection Agency (2007) Biomass combined heat and power catalog of technologies

    Google Scholar 

  22. Roni MS, Chowdhury S, Mamun S, Marufuzzaman M, Lein W, Johnson S (2017) Biomass co-firing technology with policies, challenges, and opportunities: a global review. Renew Sustain Energy Rev 78:1089–1101

    Article  CAS  Google Scholar 

  23. Moya D, Aldás C, López G, Kaparaju P (2017) Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using waste-to-energy technologies. Energy Procedia 134:286–295

    Article  Google Scholar 

  24. Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 15(3):1615–1624

    Google Scholar 

  25. Graham RG, Bergougnoum MA, Overend RP (1984) Fast pyrolysis of biomas. J Anal Appl Pyrolysis 6:95–135

    Article  CAS  Google Scholar 

  26. Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H (2018) A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sustain Energy Rev 82:3046–3059

    Google Scholar 

  27. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598

    Article  CAS  Google Scholar 

  28. Huff MD, Marshall S, Saeed HA, Lee JW (2018) Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity. Bioresour Bioprocess 5(1):1–9

    Article  Google Scholar 

  29. Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606

    Article  CAS  Google Scholar 

  30. Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J (2009) Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis 85(1–2):118–123

    Article  CAS  Google Scholar 

  31. Gao L, Wang R, Shen G, Zhang J, Meng G, Zhang J (2017) Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. J Soil Sci Plant Nutr 17(4):884–896

    Article  CAS  Google Scholar 

  32. https://www.e-education.psu.edu/egee439/node/537

  33. Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414

    Article  CAS  Google Scholar 

  34. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  35. Wang Q, Li X, Wang K, Zhu Y, Wang S (2010) Commercialization and challenges for the next generation of biofuels: biomass fast pyrolysis. Asia-Pacific Power Energy Eng Conf APPEEC

    Google Scholar 

  36. http://www.biofuelsdigest.com/bdigest/2015/08/03/the-pyromaniax-class-of-2015-the-top-10-pyrolysis-projects-in-renewable-fuels/

  37. Central Pollution Control Board/Ministry of Environment & Forests & Climate Change (2016) Study on plastic waste disposal through “plasma pyrolysis technology”

    Google Scholar 

  38. Vardon DR et al (2011) Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour Technol 102(17):8295–8303

    Google Scholar 

  39. Duan P, Savage PE (2011) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50:52–61

    Article  CAS  Google Scholar 

  40. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5):2328–2342

    Article  CAS  Google Scholar 

  41. Theegala CS, Midgett JS (2012) Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment. Bioresour Technol 107:456–463

    Google Scholar 

  42. Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Direct liquefaction of biomass. Chem Eng Technol 31(5):667–677

    Article  CAS  Google Scholar 

  43. Karagöz S, Bhaskar T, Muto A, Sakata Y (2006) Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresour Technol 97(1):90–98

    Google Scholar 

  44. Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35(12):5406–5411

    Article  CAS  Google Scholar 

  45. Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM (2010) Hydrothermal processing of microalgae using alkali and organic acids. Fuel 89(9):2234–2243

    Google Scholar 

  46. Minowa T, Masanori M, Yutaka D, Tomoko O, Shin-Ya Y (1995) Oil production from garbage by thermochemical liquefaction. Biomass Bioenergy 8(2):117–120

    Article  CAS  Google Scholar 

  47. Sun P, Heng M, Sun S, Chen J (2010) Direct liquefaction of paulownia in hot compressed water: influence of catalysts. Energy 35(12):5421–5429

    Article  CAS  Google Scholar 

  48. Zhang L, Xu CC, Champagne P (2010) Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour Technol 101(8):2713–2721

    Google Scholar 

  49. Xu C, Lancaster J (2008) Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. Water Res 42(6–7):1571–1582

    Google Scholar 

  50. Lemoine F et al (2013) Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae. Bioresour Technol 142:1–8

    Google Scholar 

  51. Xu C (Charles), Nazari L, Ray MB (2020) Hydrothermal liquefaction co-processing of wastewater sludge and lignocellulosic biomass for co-production of biogas and bio-oils. US 10,689,282 B2

    Google Scholar 

  52. Nazari L, Yuan Z, Ray MB, Xu C (Charles) (2017) Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: optimization of reaction parameters using response surface methodology. Appl Energy 203:1–10

    Google Scholar 

  53. Shayan E, Zare V, Mirzaee I (2018) Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers Manag 159:30–41

    Article  CAS  Google Scholar 

  54. Shahbaz M, Yusup S, Inayat A, Patrick DO, Ammar M (2017) The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: a review. Renew Sustain Energy Rev 73:468–476

    Google Scholar 

  55. Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A (2016) Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation. Renew Sustain Energy Rev 53:1333–1347

    Article  CAS  Google Scholar 

  56. Udomsirichakorn J, Salam PA (2014) Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew Sustain Energy Rev 30:565–579

    Article  CAS  Google Scholar 

  57. Gao N, Li A, Quan C, Qu Y, Mao L (2012) Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming. Int J Hydrogen Energy 37(12):9610–9618

    Article  CAS  Google Scholar 

  58. Moghadam RA, Yusup S, Uemura Y, Chin BLF, Lam HL, Al Shoaibi A (2014) Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process. Energy 75:40–44

    Google Scholar 

  59. Weijin G, Binbin L, Qingyu W, Zuohua H, Liang Z (2017) Supercritical water gasification of landfill leachate for hydrogen production in the presence and absence of alkali catalyst. Waste Manag 73:439–446

    Article  CAS  Google Scholar 

  60. Yakaboylu O et al (2016) Supercritical water gasification of biomass in fluidized bed: First results and experiences obtained from TU Delft/Gensos semi-pilot scale setup. Biomass Bioenergy 111:330–342

    Google Scholar 

  61. Amrullah A, Matsumura Y (2018) Supercritical water gasification of sewage sludge in continuous reactor. Bioresour Technol 249:276–283

    Google Scholar 

  62. Xiao Y, Xu S, Song Y, Shan Y, Wang C, Wang G (2017) Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system. Fuel Process Technol 165:54–61

    Article  CAS  Google Scholar 

  63. Duan PG, Li SC, Jiao JL, Wang F, Xu YP (2018) Supercritical water gasification of microalgae over a two-component catalyst mixture. Sci Total Environ 630:243–253

    Article  CAS  PubMed  Google Scholar 

  64. Hossain MZ, Chowdhury MBI, Jhawar AK, Charpentier PA (2017) Supercritical water gasification of glucose using bimetallic aerogel Ru-Ni-Al2O3 catalyst for H2 production. Biomass Bioenerg 107:39–51

    Article  CAS  Google Scholar 

  65. Roos CJ (2010) Clean heat and power using biomass gasification for industrial and agricultural projects. U.S. Department of Energy, Clean Energy Application Center

    Google Scholar 

  66. http://www.omafra.gov.on.ca/english/engineer/facts/07-057.htm#2

  67. https://www.bioenergyconsult.com/biochemical-conversion-technologies/

  68. Kim D, Lee K, Park KY (2015) Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. Int Biodeterior Biodegrad 101:42–46

    Article  CAS  Google Scholar 

  69. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781

    Article  CAS  Google Scholar 

  70. Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J Environ Chem Eng 2(3):1821–1830

    Article  CAS  Google Scholar 

  71. Costa A, Ely C, Pennington M, Rock S, Staniec C, Turgeon J (2015) Anaerobic digestion and its applications. United States Environ. Prot. Agency

    Google Scholar 

  72. Nielsen HB, Thygesen A, Thomsen AB, Schmidt JE (2011) Anaerobic digestion of waste activated sludge-comparison of thermal pretreatments with thermal inter-stage treatments. J Chem Technol Biotechnol 86(2):238–245

    Article  CAS  Google Scholar 

  73. Neyens E, Baeyens J (2003) A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 98(1–3):51–67

    Article  CAS  PubMed  Google Scholar 

  74. Appels L, Degrève J, Van der Bruggen B, Van Impe J, Dewil R (2010) Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour Technol 101(15):5743–5748

    Article  CAS  PubMed  Google Scholar 

  75. Tanaka S, Kobayashi T, Kamiyama K, Bildan MLNS (1997) Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci Technol 35(8):209–215

    Article  CAS  Google Scholar 

  76. Dhar BR, Elbeshbishy E, Hafez H, Nakhla G, Ray MB (2011) Thermo-oxidative pretreatment of municipal waste activated sludge for volatile sulfur compounds removal and enhanced anaerobic digestion. Chem Eng J 174(1):166–174

    Article  CAS  Google Scholar 

  77. Ferrer I, Ponsá S, Vázquez F, Font X (2008) Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 42(2):186–192

    Article  CAS  Google Scholar 

  78. Strong PJ, Gapes DJ (2012) Thermal and thermo-chemical pre-treatment of four waste residues and the effect on acetic acid production and methane synthesis. Waste Manag 32(9):1669–1677

    Article  CAS  PubMed  Google Scholar 

  79. Dhar BR, Nakhla G, Ray MB (2012) Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manag 32(3):542–549

    Article  CAS  PubMed  Google Scholar 

  80. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156

    Article  CAS  Google Scholar 

  81. Sarkar S, Ali S, Rehmann L, Nakhla G, Ray MB (2014) Degradation of estrone in water and wastewater by various advanced oxidation processes. J Hazard Mater 278:16–24

    Article  CAS  PubMed  Google Scholar 

  82. Rajan RV, Lin J, Ray BT (1989) Low-level chemical pretreatment for enhanced sludge solubilization. Res J Water Pollut Control Fed 61(11/12):1678–1683

    CAS  Google Scholar 

  83. Vlyssides AG, Karlis PK (2004) Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour Technol 91(2):201–206

    Google Scholar 

  84. Devlin DC, Esteves SRR, Dinsdale RM, Guwy AJ (2011) The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour Technol 102(5):4076–4082

    Google Scholar 

  85. Kalogo Y, Monteith H (2008) State of science report: energy and resource recovery from sludge

    Google Scholar 

  86. Abelleira J, Pérez-Elvira SI, Sánchez-Oneto J, Portela JR, Nebot E (2012) Advanced thermal hydrolysis of secondary sewage sludge: a novel process combining thermal hydrolysis and hydrogen peroxide addition. Resour Conserv Recycl 59:52–57

    Article  Google Scholar 

  87. Guan B, Yu J, Fu H, Guo M, Xu X (2012) Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution. Water Res 46(2):425–432

    Article  CAS  PubMed  Google Scholar 

  88. Uma Rani R, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2012) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103(1):415–424

    Google Scholar 

  89. Global Methane Initiative (GMI) (2013) Successful applications of anaerobic digestion from across the world

    Google Scholar 

  90. https://zerowasteeurope.eu/2011/09/mechanical-biological-treatment-mbt-zero-waste/

  91. Department of Environment Food and Rural Affairs UK (2013) Mechanical biological treatment of municipal solid waste

    Google Scholar 

  92. Indonesia National Council on Climate Change (2012) Indonesia’s technology needs assessment for climate change mitigation 2012

    Google Scholar 

  93. https://www.recyclingproductnews.com/article/27455/new-report-finds-european-mechanical-biological-treatment-systems-provide-valuable-lessons-to-north-america

  94. Fei F, Wen Z, Huang S, De Clercq D (2018) Mechanical biological treatment of municipal solid waste: energy efficiency, environmental impact and economic feasibility analysis. J Clean Prod 178:731–739

    Article  Google Scholar 

  95. http://www.alternative-energy-tutorials.com/energy-articles/waste-to-energy-conversion.html

  96. Bušić A et al (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56(3):289–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tan JS, Phapugrangkul P, Lee CK, Lai ZW, Abu Bakar MH, Murugan P (2019) Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatal Agric Biotechnol 21:101293

    Google Scholar 

  98. Phwan CK, Ong HC, Chen WH, Ling TC, Ng EP, Show PL (2018) Overview: comparison of technologies and fermentation processes of bioethanol from microalgae. Energy Convers Manag 173:81–94

    Article  CAS  Google Scholar 

  99. Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606

    Google Scholar 

  100. Yoshida T, Nonaka H, Matsumura Y (2005) Hydrothermal treatment of cellulose as a pretreatment for ethanol fermentation: cellulose hydrolysis experiments. J Jpn Inst Energy 84(7):544–548

    Article  CAS  Google Scholar 

  101. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:1–32

    Article  CAS  Google Scholar 

  102. Niju S, Swathika M (2019) Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production. Biocatal Agric Biotechnol 20:101263

    Google Scholar 

  103. Ambye-Jensen M, Balzarotti R, Thomsen ST, Fonseca C, Kádár Z (2018) Combined ensiling and hydrothermal processing as efficient pretreatment of sugarcane bagasse for 2G bioethanol production. Biotechnol Biofuels 11(1):1–11

    Article  CAS  Google Scholar 

  104. Che Kamarludin SN, Jainal MS, Azizan A, Safaai NSM, Daud ARM (2014) Mechanical pretreatment of lignocellulosic biomass for biofuel production. Appl Mech Mater 625:838–841

    Google Scholar 

  105. Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian R (2015) Food waste-to-energy conversion technologies: current status and future directions. Waste Manag 38(1):399–408

    Article  CAS  PubMed  Google Scholar 

  106. Ziemiński K, Romanowska I, Kowalska M (2012) Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag 32(6):1131–1137

    Article  CAS  PubMed  Google Scholar 

  107. Zentou H, Abidin ZZ, Zouanti M, Greetham D (2017) Effect of operating conditions on molasses fermentation for bioethanol production. Int J Appl Eng Res 12(15):5202–5506

    Google Scholar 

  108. Chohan NA, Aruwajoye GS, Sewsynker-Sukai Y, Gueguim Kana EB (2020) Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment. Renew Energy 146:1031–1040

    Google Scholar 

  109. Rosales-Calderon O, Arantes V (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels vol 12, no 1

    Google Scholar 

  110. Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57:468–478

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Nazari .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazari, L., Xu, C.(., Ray, M.B. (2021). Advanced Technologies (Biological and Thermochemical) for Waste-to-Energy Conversion. In: Advanced and Emerging Technologies for Resource Recovery from Wastes. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9267-6_3

Download citation

Publish with us

Policies and ethics