Skip to main content

Deep-Learning-Based Dynamic Range Compression for 3D Scene Hologram

  • Conference paper
  • First Online:
ICOL-2019

Abstract

This study proposes a dynamic-range compression for digital holograms generated from three-dimensional scenes using deep neural network (DNN). This method uses an error diffusion algorithm to binarize holograms with an 8-bit gradation; moreover, the DNN predicts the original gradation holograms from binary holograms. This method’s performance exceeds that of JPEG 2000 and high-efficiency video coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, P. Schelkens, Signal processing challenges for digital holographic video display systems. Sig. Process. Image 70, 114–130 (2019)

    Article  Google Scholar 

  2. M.V. Bernardo, P. Fernandes, A. Arrifano, M. Antonini, E. Fonseca, P.T. Fiadeiro, M. Pereira, Holographic representation: hologram plane versus object plane. Sig. Process. Image 68, 193–206 (2018)

    Article  Google Scholar 

  3. P.A. Kochańska, M. Makowski, Compression of computer-generated holograms in image projection. Photon. Lett. Pol. 9, 60–62 (2017)

    Article  Google Scholar 

  4. P. Tsang, W.K. Cheung, T. Kim, Y.S. Kim, T.C. Poon, Low-complexity compression of holograms based on delta modulation. Opt. Commun. 284, 2113–2117 (2011)

    Article  ADS  Google Scholar 

  5. P. Tsang, K.W. Cheung, T.C. Poon, Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization. Appl. Opt. 50, H42–H49 (2011)

    Article  Google Scholar 

  6. Y. Rivenson, Y. Zhang, H. GĂ¼naydın, D. Teng, A. Ozcan, Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, 17141 (2018)

    Article  Google Scholar 

  7. R. Horisaki, R. Takagi, J. Tanida, Deep-learning-generated holography. Appl. Opt. 57, 3859–3863 (2018)

    Article  ADS  Google Scholar 

  8. S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, X. Li, Compression of phase-only holograms with JPEG standard and deep learning. Appl. Sci. 8, 1258 (2018)

    Article  Google Scholar 

  9. T. Shimobaba, D. Blinder, M. Makowski, P. Schelkens, Y. Yamamoto, I. Hoshi, T. Nishitsuji, Y. Endo, T. Kakue, T. Ito, Dynamic-range compression scheme for digital hologram using a deep neural network. Opt. Lett. 44, 3038–3041 (2019)

    Article  ADS  Google Scholar 

  10. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, T. Ito, Band-limited double-step Fresnel diffraction and its application to computer-generated holograms. Opt. Exp. 21, 9192–9197 (2013)

    Article  ADS  Google Scholar 

  11. O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241

    Google Scholar 

  12. T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, T. Ito, Computational wave optics library for C++: CWO++ library. Comput. Phys. Commun. 183, 1124–1138 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyoshi Shimobaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shimobaba, T. et al. (2021). Deep-Learning-Based Dynamic Range Compression for 3D Scene Hologram. In: Singh, K., Gupta, A.K., Khare, S., Dixit, N., Pant, K. (eds) ICOL-2019. Springer Proceedings in Physics, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-15-9259-1_10

Download citation

Publish with us

Policies and ethics