Skip to main content

Development of an Automated FMO Calculation Protocol to Construction of FMO Database

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method

Abstract

In recent years, inter-fragment interaction energy (IFIE) analyses based on the fragment molecular orbital (FMO) method have been widely used for drug design. The reason is that the IFIE analyses can quantify not only electrostatic interactions such as hydrogen bonds but also dispersion forces such as CH/π interactions difficult to evaluate with classical molecular mechanics (MM). On the other hand, because preparing an input structure for the FMO calculation requires a lot of complicated preprocessing, including complementation of missing atoms and structure optimization, it is difficult to process a large number of structures. In this study, an automated FMO calculation protocol (Auto-FMO protocol) was developed to calculate huge numbers of protein and ligand complexes, such as drug discovery targets, by an ab initio FMO method. The protocol performs structure preparation as preprocessing, submission of FMO processing, and analysis of FMO results as post-processing. Optionally, quantum mechanics/molecular mechanics (QM/MM) optimization of complex structures, conformational searches of ligand structures in solution, and molecular mechanics Poisson–Boltzmann or generalized Born surface area (MM-PBSA/GBSA) calculations can also be carried out. To demonstrate the usefulness of the Auto-FMO protocol, we first compared the ligand-binding interaction energies of 20 estrogen receptor α (ERα) and 70 p38 MAP kinase datasets prepared by the Auto-FMO protocol with those prepared manually. In most cases, the interaction energies showed reasonable agreement between both preparations. Based on such technology, we constructed the FMO database (FMODB; https://drugdesign.riken.jp/FMODB/) published in February 2019, consisting of quantum chemical calculation results with the FMO method. FMODB currently contains thousands of FMO calculation data for hundreds of proteins mostly processed by the Auto-FMO protocol. By constructing FMODB and its web interface, even researchers unfamiliar with quantum mechanics (QM) calculations can analyze inter- and intra-molecular interactions of target proteins. Furthermore, accumulation of FMO data is expected to lead to accurate prediction of ligand activities and construction of QM-based force fields by using machine learning and artificial intelligence (AI). This chapter was reprinted and adapted with permission from Watanabe et al. CBI J. 2019, 58, 5–18. Copyright 2019 Chem-Bio Informatics Society [38].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  2. Fedrov DG, Kitaura K (2009) The fragment molecular orbital method: practical application to large molecular system. CRC Press, 2009

    Google Scholar 

  3. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344

    Article  CAS  Google Scholar 

  4. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comp Chem 28:222–237

    Article  CAS  Google Scholar 

  5. Tsukamoto T, Kato K, Kato A, Nakano T, Mochizuki Y et al (2015) Implementation of pair interaction energy decomposition analysis and its applications to protein-ligand systems. J Comput Chem Jpn 14:1–9

    Article  CAS  Google Scholar 

  6. Hitaoka S, Harada M, Yoshida T, Chuman H (2010) Correlation analyses on binding affinity of sialic acid analogues with Influenza Virus Neuraminidase-1 using ab Initio MO calculations on their complex structures. J Chem Inf Model 50:1796–1805

    Article  CAS  Google Scholar 

  7. Hitaoka S, Matoba H, Harada M, Yoshida T, Tsuji D et al (2011) Correlation analyses on binding affinity of sialic acid analogues and anti-Influenza drugs with human neuraminidase using ab Initio MO calculations on their complex structures-LERE-QSAR analysis (IV). J Chem Inf Model 51:2706–2716

    Article  CAS  Google Scholar 

  8. Watanabe C, Fukuzawa K, Okiyama Y, Tsukamoto T, Kato A et al (2013) Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. J Mol Graph Model 41:31–42

    Article  CAS  Google Scholar 

  9. Fukuzawa K, Kitaura K, Uebayasi M, Nakata K, Kaminuma T et al (2005) Ab Initio quantum mechanical study of the binding energies of human estrogen receptor α with its ligands: an application of fragment molecular orbital method. J Comput Chem 26:1–10

    Article  CAS  Google Scholar 

  10. Watanabe H, Tanaka S, Okimoto N, Hasegawa A, Taiji M et al (2010) Comparison of binding affinity evaluations for FKBP ligands with state-of-the-art computational methods: FMO, QM/MM, MM-PB/SA, and MP-CAFEE approaches. CBIJ 10:32–45

    Article  Google Scholar 

  11. Mazanetz MP, Ichihara O, Law RJ, Whittaker M (2011) Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. J Cheminform 3:2

    Article  CAS  Google Scholar 

  12. Heifetz A, Chudyk EI, Gleave L, Aldeghi M, Cherezov V et al (2016) The fragment molecular orbital method reveals new insight into the chemical nature of GPCR–ligand interactions. J Chem Inf Model 56:159–172

    Article  CAS  Google Scholar 

  13. Heifetz A, Aldeghi M, Chudyk EI, Fedorov DG, Bodkin MJ et al (2016) Using the fragment molecular orbital method to investigate agonist–orexin-2 receptor interactions. Biochem Soc Trans 44:574–581

    Article  CAS  Google Scholar 

  14. Heifetz A, Trani G, Aldeghi M, MacKinnon CH, McEwan PA et al (2016) Fragment molecular orbital method applied to lead optimization of novel interleukin-2 inducible T-cell kinase (ITK) inhibitors. J Med Chem 59:4352–4363

    Article  CAS  Google Scholar 

  15. Morao I, Fedorov DG, Robinson R, Southey M, Townsend-Nicholson A et al (2017) Rapid and accurate assessment of GPCR–ligand interactions using the fragment molecular orbital-based density-functional tight-binding method. J Comp Chem 38:1987–1990

    Article  CAS  Google Scholar 

  16. Chudyk EI, Sarrat L, Aldeghi M, Fedorov DG, Bodkin MJ, James T, Southey M, Robinson R, Morao I, Heifetz A (2018) Exploring GPCR-ligand interactions with the fragment molecular orbital (FMO) method. In: Computational Methods for GPCR Drug Discovery, Springer, Methods in Molecular Biology, 2018, 1705, pp 179–195

    Google Scholar 

  17. Okimoto N, Otsuka T, Hirano Y, Taiji M (2018) Use of the multilayer fragment molecular orbital method to predict the rank order of protein-ligand binding affinities: a case study using tankyrase 2 inhibitors. ACS Omega 3:4475–4485

    Article  CAS  Google Scholar 

  18. Takaya D, Inaka K, Omura A, Takenuki K, Kawanishi M et al (2018) Characterization of crystal water molecules in a high-affinity inhibitor and hematopoietic prostaglandin D synthase complex by interaction energy studies. Bioorg Med Chem 26:4726–4734

    Article  CAS  Google Scholar 

  19. Xu F, Tanaka S, Watanabe H, Shimane Y, Iwasawa M, Ohishi K et al (2018) Computational analysis of the interaction energies between amino acid residues of the measles virus hemagglutinin and its receptors. Viruses 10:236

    Article  Google Scholar 

  20. Amari S, Aizawa M, Zhang J, Fukuzawa K, Mochizuki Y et al (2006) VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab Initio fragment molecular orbital method for virtual ligand screening. J Chem Inf Model 46:221–230

    Article  CAS  Google Scholar 

  21. Kurauchi R, Watanabe C, Fukuzawa K, Tanaka S (2015) Novel type of virtual ligand screening on the basis of quantum-chemical calculations for protein-ligand complexes and extended clustering techniques. Comput Theor Chem 1061:12–22

    Article  CAS  Google Scholar 

  22. Maruyama K, Sheng Y, Watanabe H, Fukuzawa K, Tanaka S (2018) Application of singular value decomposition to the inter-fragment interaction energy analysis for ligand screening. Comput Theor Chem 1132:23–34

    Article  CAS  Google Scholar 

  23. Watanabe C, Watanabe H, Fukuzawa K, Parker LJ, Okiyama Y et al (2017) Theoretical analysis of activity cliffs among benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics poisson-Boltzmann surface area (FMO+MM-PBSA) approach. J Chem Inf Model 57:2996–3010

    Article  CAS  Google Scholar 

  24. Alexeev Y, Mazanetz MP, Ichihara O, Fedorov DG (2012) GAMESS as a free quantum-mechanical platform for drug research. Curr Top Med Chem 12:2013–2033

    Article  CAS  Google Scholar 

  25. Watanabe H, Okiyama Y, Nakano T, Tanaka S (2010) Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson-Boltzmann equation. Chem Phys Lett 500:116–119

    Article  CAS  Google Scholar 

  26. Okiyama Y, Nakano T, Watanabe C, Fukuzawa K, Mochizuki Y et al (2018) Fragment molecular orbital calculations with implicit solvent based on the Poisson-Boltzmann equation: implementation and DNA study. J Phys Chem B 122:4457–4471

    Article  CAS  Google Scholar 

  27. Okiyama Y, Watanabe C, Fukuzawa K, Mochizuki Y, Nakano T, et al. (2019) Fragment molecular orbital calculations with implicit solvent based on the Poisson–Boltzmann equation: II. protein and its ligand-binding system studies. J Phys Chem B 123:957–973

    Google Scholar 

  28. FMO drug design consortium (FMODD), https://fmodd.jp/ (accessed on November 10, 2020).

  29. Kobayashi I, Takeda R, Suzuki R, Shimamura K, Ishimura H et al (2017) Specific interactions between androgen receptor and its ligand: ab initio molecular orbital calculations in water. J Mol Graph Model 75:383–389

    Article  CAS  Google Scholar 

  30. Ozawa M, Ozawa T, Nishio M, Ueda K (2017) The role of CH/π interactions in the high affinity binding of streptavidin and biotin. J Mol Graph Model 75:117–124

    Article  CAS  Google Scholar 

  31. Ozawa M, Ozawa T, Ueda K (2017) Application of the fragment molecular orbital method analysis to fragment-based drug discovery of BET (bromodomain and extra-terminal proteins) inhibitors. J Mol Graph Model 74:73–82

    Article  CAS  Google Scholar 

  32. Takeda R, Kobayashi I, Shimamura K, Ishimura H, Kadoya R et al (2017) Specific interactions between vitamin-D receptor and its ligands: ab initio molecular orbital calculations in water. J Steroid Biochem Mol Biol 171:75–79

    Article  CAS  Google Scholar 

  33. Takeda R, Kobayashi I, Suzuki R, Kawai K, Kittaka A et al (2018) Proposal of potent inhibitors for vitamin-D receptor based on ab initio fragment molecular orbital calculations. J Mol Graph Model 80:320–326

    Article  CAS  Google Scholar 

  34. Takeda R, Suzuki R, Kobayashi I, Kawai K, Kittaka A et al (2018) Specific interactions between vitamin D receptor and ligand depending on its chirality: ab initio fragment molecular orbital calculations. CBIJ. 18:32–43

    Article  CAS  Google Scholar 

  35. Sheng Y, Watanabe H, Maruyama K, Watanabe C, Okiyama Y et al (2018) Towards good correlation between fragment molecular orbital interaction energies and experimental IC50 for ligand binding: A case study of p38 MAP kinase. Comput Struct Biotechnol J 16:421–434

    Article  CAS  Google Scholar 

  36. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  37. FMO database, https://drugdesign.riken.jp/FMODB/ (accessed on November 10, 2020).

  38. Watanabe C, Watanabe H, Okiyama Y, Takaya D, Fukuzawa K, Tanaka S, Honma T (2019) Development of an automated fragment molecular orbital (FMO) calculation protocol toward construction of quantum mechanical calculation database for large biomolecules. CBIJ 19:5–18

    Article  CAS  Google Scholar 

  39. BIOVIA Pipeline Pilot, 17.2.0.1361; Dassault systèmes BIOVIA: 5005 Wateridge Vista Drive,San Diego, CA 92121 USA, 2017.

    Google Scholar 

  40. Molecular Operating Environment (MOE), 20151001; Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2018.

    Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. (2009) Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT

    Google Scholar 

  42. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J et al (2008) AMBER 10. University of California, San Francisco CA

    Google Scholar 

  43. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  44. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method J Comput Chem 21:132–146.

    Google Scholar 

  45. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

  46. BioStation: ABINIT-MP and BioStation Viewer; The program package is available at: http://www.ciss.iis.u-tokyo.ac.jp/english/dl/index.php (accessed on November 10, 2020) and http://www.ciss.iis.u-tokyo.ac.jp/riss/dl/download/index.php#download_2 (accessed on November 10, 2020).

  47. MIZUHO/BioStation Viewer 3.0; (2013) Mizuho Information and Research Institute Inc.

    Google Scholar 

  48. Okiyama Y, Nakano T, Yamashita K, Mochizuki Y, Taguchi N, Tanaka S (2010) Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach. Chem Phys Lett 490:84–89

    Article  CAS  Google Scholar 

  49. Okiyama Y, Watanabe H, Fukuzawa K, Nakano T, Mochizuki Y, Ishikawa T, Tanaka S, Ebina K (2007) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. Chem Phys Lett 449:329–335

    Google Scholar 

  50. Okiyama Y, Watanabe H, Fukuzawa K, Nakano T, Mochizuki Y, Ishikawa T, Ebina K, Tanaka S (2009) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations. Chem Phys Lett 467:417–423

    Google Scholar 

  51. PDBbind, http://www.pdbbind.org.cn/ (accessed on November 10, 2020).

  52. Saitou S, Iijima J, Fujimoto M, Mochizuki Y, Okuwaki K et al (2018) Application of TensorFlow to recognition of visualized results of fragment molecular orbital (FMO) calculations. CBIJ 18:58–69

    Article  CAS  Google Scholar 

  53. Doi H, Okuwaki K, Mochizuki Y, Ozawa T, Yasuoka K (2017) Dissipative particle dynamics (DPD) simulations with fragment molecular orbital (FMO) based effective parameters for 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) membrane. Chem Phys Lett 684:427–432

    Article  CAS  Google Scholar 

  54. Yoshida M, Hirono S (2019) A 3D-QSAR analysis of CDK2 inhibitors using FMO calculations and PLS regression. Chem Pharm Bull 67:546–555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Teruki Honma, Dr. Kikuko Kamisaka, Mr. Shunpei Nagase, Dr. Kaori Fukuzawa, and Prof. Shigenori Tanaka for their collaborators. The authors would like to thank Dr. Kazumi Tsuda and Mr. Daisuke Murayama at Science & Technology Systems, Inc., for supporting the development of the automated FMO calculation protocol. This research was conducted as part of the activity of the FMO drug design consortium (FMODD). The FMO calculations were performed on the K computer (project IDs: hp150160, hp160103, hp170183, and hp180147). For QM/MM optimizations, the supercomputer HOKUSAI (RIKEN Advanced Center for Computing and Communications) was used. PIEDA calculations were performed with the MIZUHO/BioStation software package. This research was partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP18am0101113. The authors acknowledge JSPS KAKENHI Grant Number JP18K06619 and JST PRESTO Grant Number JPMJPR18GD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiduru Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watanabe, C., Watanabe, H., Okiyama, Y., Takaya, D. (2021). Development of an Automated FMO Calculation Protocol to Construction of FMO Database. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_9

Download citation

Publish with us

Policies and ethics