Skip to main content

Abstract

Drug discovery is one of the most important applications of the fragment molecular orbital (FMO) method. By using the FMO calculation, it is possible to determine the binding properties between a drug candidate compound and a target protein, predict the binding activity, and begin to produce a rational design for the new drug compound. The FMO drug discovery consortium is an industry–academia–government cooperation group, which is conducting various studies with the aim of developing the FMO method as a practical in silico drug discovery technology. In this chapter, we introduce the status of the research conducted by four working groups (WGs) focusing on drug target proteins (the kinase, protease, nuclear receptor, and protein–protein interaction WGs) and two WGs focusing on methodology (one WG responsible for developing drug discovery methods and databases and one collaboration with the molecular dynamics-based KBDD, i.e., K supercomputer-based drug discovery, consortium). We also discuss the current state and challenges of FMO-based drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. High performance computing infrastructure. https://www.hpci-office.jp/folders/english

  2. Protein data bank. https://www.wwpdb.org/

  3. ChEMBL database. https://www.ebi.ac.uk/chembl/

  4. Watanabe C, Watanabe H, Okiyama Y, Takaya D, Fukuzawa K, Tanaka S, Honma T (2019) Development of an automated fragment molecular orbital (FMO) calculation protocol toward construction of quantum mechanical calculation database for large biomolecules. Chem-Bio Inform J 19:5–18

    Article  CAS  Google Scholar 

  5. PDB bind. https://www.pdbbind.org.cn/

  6. Wu P, Nielsen TE, Clausen MH (2015) Trends Pharmacol Sci 36:422

    Article  CAS  PubMed  Google Scholar 

  7. Cuadrado A, Nebreda AR (2010) Biochem J 429:403

    Article  CAS  PubMed  Google Scholar 

  8. Pearlman D (2005) J Med Chem 48:7796

    Article  CAS  PubMed  Google Scholar 

  9. Sheng Y, Watanabe H, Maruyama K, Watanabe C, Okiyama Y, Honma T, Fukuzawa K, Tanaka S (2018) Comput Struct Biotech J 16:421

    Article  CAS  Google Scholar 

  10. Maruyama K, Sheng Y, Watanabe H, Fukuzawa K, Tanaka S (2018) Comput. Theor Chem 1132:23

    Article  CAS  Google Scholar 

  11. Klema V, Laud A (1980) IEEE Trans Automat Contr 25:164

    Article  Google Scholar 

  12. Kleibergen F, Paap R (2006) J Economet 133:97

    Article  Google Scholar 

  13. Brand M (2006) Linear Algebra Appl 415:20

    Article  Google Scholar 

  14. De Lathauwer L, De Moor B, Vandewalle J (2000) SIAM J Mat Anal 21:1253

    Google Scholar 

  15. Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, London

    Google Scholar 

  16. NumPy. www.numpy.org

  17. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  18. Fedorov DG, Kitaura K (2009) The fragment molecular orbital method: practical application to large molecular system. CRC Press

    Google Scholar 

  19. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344

    Article  CAS  PubMed  Google Scholar 

  20. Yagi Y, Hattori Y, Naoshima Y (2012) Large-scale quantum chemical calculation on the complexes of HIV-1 protease and inhibitors: a relationship of calculation energies with drug effects of inhibitors. Trans Jpn Soc Simulat Tech 4(2):41–50

    Google Scholar 

  21. Yagi Y, Tanaka T, Imagawa A, Moriya Y, Mori Y, Kimura T, Kamezawa M, Naoshima Y (2014) Large-scale biomolecular chemical computations toward the prediction of Burkholderia cepacia lipase enantioselectivity. J Adv Simulat Sci Eng 1(1):141–160

    Article  Google Scholar 

  22. Yagi Y, Kimura T, Kamezawa M, Naoshima Y (2018) Biomolecular chemical simulations toward elucidation of the enantioselectivity and reactivity of lipases in organic synthesis. CBI J 18:21–31

    Article  CAS  Google Scholar 

  23. Imai T, Miyazaki H, Hirose S, Hori H, Hayashi T, Kageyama R, Ohkubo H, Nakanishi S, Murakami K (1983) Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sci USA 80:7405–7409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucl Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL repository: new features and functionality. Nucleic Acids Res 45:D313–D319

    Article  CAS  PubMed  Google Scholar 

  26. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173

    Article  PubMed  Google Scholar 

  27. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  PubMed  Google Scholar 

  28. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T (2017) Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 7:10480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  30. Okiyama Y, Nakano T, Yamashita K, Mochizuki Y, Taguchi N, Tanaka S (2010) Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach. Chem Phys Lett 490:84–89

    Article  CAS  Google Scholar 

  31. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237

    Article  CAS  PubMed  Google Scholar 

  32. Tsukamoto T, Kato K, Kato A, Nakano T, Mochizuki Y, Fukuzawa K (2015) Implementation of pair interaction energy decomposition analysis and its applications to protein-ligand systems. J Comput Chem Jpn 14:1–9

    Article  CAS  Google Scholar 

  33. MIZUHO/BioStation Viewer 3.0, Mizuho information and research institute Inc. (2013)

    Google Scholar 

  34. Takeda R, Kobayashi I, Shimamura K, Ishimura H, Kadoya R, Kawai K, Kittaka A, Takimoto-Kamimura M, Kurita N (2017) Specific interactions between vitamin-D receptor and its ligands: ab initio molecular orbital calculations in water. J Steroid Biochem Mol Biol 171:75–79

    Article  CAS  PubMed  Google Scholar 

  35. Takeda R, Kobayashi I, Suzuki R, Kawai K, Kittaka A, Takimoto-Kamimura M, Kurita N (2018) Proposal of potent inhibitors for vitamin-D receptor based on ab initio fragment molecular orbital calculations. J Mol Graph Model 80:320–326

    Article  CAS  PubMed  Google Scholar 

  36. Terauchi Y, Suzuki R, Takeda R, Kobayashi I, Kittaka A, Takimoto-Kamimura M, Kurita N (2019) Ligand chirality can affect histidine protonation of vitamin-D receptor: ab initio molecular orbital calculations in water. J Steroid Biochem Mol Biol 186:89–95

    Article  CAS  PubMed  Google Scholar 

  37. Takeda R, Suzuki R, Kobayashi I, Kawai K, Kittaka A, Takimoto-Kamimura M, Kurita N (2018) Specific interactions between vitamin D receptor and ligand depending on its chirality: ab initio fragment molecular orbital calculations. Chem-Bio Inform J 18:32–43

    Article  CAS  Google Scholar 

  38. Kobayashi I, Takeda R, Shimamura K, Ishimura H, Kadoya R, Kawai K, Takimoto-Kamimura M, Kurita N (2017) Specific interactions between androgen receptor and its ligand: ab initio molecular orbital calculations in water. J Mol Graph Model 75:383–389

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki S, Nakamura T, Saito R, Terauchi Y, Kawai K, Takimoto-Kamimura M, Kurita N (2020) Structural change of retinoic-acid receptor-related orphan receptor induced by binding of inverse-agonist: molecular dynamics and ab initio molecular orbital simulations. Comput Struct Biotechnol J (In press). https://doi.org/10.1016/j.csbj.2020.06.034

  40. Fukuzawa K, Kitaura K, Uebayasi M et al (2005) Ab initio quantum mechanical study of the binding energies of human estrogen receptor α with its ligands: an application of fragment molecular orbital method. J Comput Chem 26:1–10

    Article  CAS  PubMed  Google Scholar 

  41. Fukuzawa K, Mochizuki Y, Tanaka S, Kitaura K, Nakano T (2006) Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. J Phys Chem B 110:16102–16110

    Article  CAS  PubMed  Google Scholar 

  42. Amari S, Aizawa M, Zhang J, Fukuzawa K, Mochizuki Y, Iwasawa Y, Nakata K, Chuman H, Nakano T (2006) VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening. J Chem Inf Model 46:221–230

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka S, Watanabe C, Okiyama Y (2013) Statistical correction to effective interactions in the fragment molecular orbital method. Chem Phys Lett 556:272–277

    Article  CAS  Google Scholar 

  44. Okiyama Y, Watanabe C, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S (2019) Fragment molecular orbital calculations with implicit solvent based on the Poisson-Boltzmann equation: II. Protein and its ligand-binding system studies. J Phys Chem B 123:957–973

    Article  CAS  PubMed  Google Scholar 

  45. Seki Y, Kato T, Furuishi T, Fukuzawa K, Yonemochi E (2018) Analysis of ligand binding specificity of estrogen receptor by the fragment molecular orbital method. J Comput Chem Jpn 17:160–162

    Article  CAS  Google Scholar 

  46. Malamas MS, Manas ES, McDevitt RE, Gunawan I, Xu ZB, Collini MD, Miller CP, Dinh T, Henderson RA, Keith JC, Harris HA (2004) Design and synthesis of aryl diphenolic azoles as potent and selective estrogen receptor-β ligands. J Med Chem 47:5021–5040

    Article  CAS  PubMed  Google Scholar 

  47. Ivanov AA, Khuri FR, Fu H (2013) Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci 34:393–400

    Google Scholar 

  48. Arkin MR, Tang Y, Wells J (2014) A, Small-molecule inhibitor of protein-protein interactions: progressing towards the reality. Chem Biol 21:1102–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  50. Kitaura K, Morokuma K (1976) New energy decomposition scheme for molecular-interactions within Hartree-Fock approximation. Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  51. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  52. McLure KG, Takagi M, Kastan MB (2004) NAD+ modulates p53 DNA binding specificity and function. Mol Cell Biol 24:9958–9967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  CAS  PubMed  Google Scholar 

  54. Warnock LJ, Knox AA, Mee TR, Raines SA, Milner J (2008) Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumour suppressor protein. Cancer Biol Ther 7:1481–1489

    Google Scholar 

  55. Itahana Y, Ke H, Zhang Y (2009) p53 Oligomerization is essential for its C-terminal lysine acetylation. J Biol Chem 284:5158–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee AS et al (2003) Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. J Mol Biol 327:699–709

    Article  CAS  PubMed  Google Scholar 

  57. Atz J, Wagner P, Roemer K (2000) Function, oligomerization, and conformation of tumor-associated p53 proteins with mutated C-terminus. J Cell Biochem 76:572–584

    Article  CAS  PubMed  Google Scholar 

  58. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008

    CAS  PubMed  Google Scholar 

  59. Chène P (2003) Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3:102–109

    Article  PubMed  CAS  Google Scholar 

  60. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    Article  CAS  PubMed  Google Scholar 

  61. Kumar SK et al (2003) Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J Med Chem 46:2813–2815

    Article  CAS  PubMed  Google Scholar 

  62. Miyazaki M et al (2013) Lead optimization of novel p53-MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Bioorg Med Chem Lett 23:728–732

    Article  CAS  PubMed  Google Scholar 

  63. De Turiso FGL et al (2013) Rational design and binding mode duality of MDM2-p53 inhibitors. J Med Chem 56:4053–4070

    Article  CAS  Google Scholar 

  64. Holzer P et al (2015) Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J Med Chem 58:6348–6358

    Article  CAS  PubMed  Google Scholar 

  65. Bogen SL et al (2016) Discovery of novel 3,3-disubstituted piperidines as orally bioavailable, potent, and efficacious HDM2-p53 inhibitors. ACS Med Chem Lett 7:324–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gonzalez AZ et al (2014) Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction. J Med Chem 57:2472–2488

    Article  CAS  PubMed  Google Scholar 

  67. Gessier F et al (2015) Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53-MDM2 interaction with a distinct binding mode. Bioorg Med Chem Lett 25:3621–3625

    Article  CAS  PubMed  Google Scholar 

  68. Gollner A et al (2016) Discovery of novel Spiro[3 H-indole-3,2′-pyrrolidin]-2(1 H)-one compounds as chemically stable and orally active inhibitors of the MDM2–p53 interaction. J Med Chem 59:10147–10162

    Article  CAS  PubMed  Google Scholar 

  69. Furet P et al (2016) Discovery of a novel class of highly potent inhibitors of the p53–MDM2 interaction by structure-based design starting from a conformational argument. Bioorg Med Chem Lett 26:4837–4841

    Article  CAS  PubMed  Google Scholar 

  70. Ding Y, Mei Y, Zhang JZH (2008) Quantum mechanical studies of residue-specific hydrophobic interactions in p53-MDM2 binding. J Phys Chem B 112:11396–11401

    Article  CAS  PubMed  Google Scholar 

  71. Kussie PH et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  72. Chemical Computing Group Inc. (2004) Molecular operating environment (MOE). Sci Comput Instrum 22(1):32

    Google Scholar 

  73. Nakano T, Mochizuki Y, Fukuzawa K, Amari S, Tanaka S (2006) Developments and applications of ABINIT-MP software based on the fragment molecular orbital method. Modern Methods Theor Phys Chem Biopolym 12(5):39–52

    Article  Google Scholar 

  74. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  CAS  PubMed  Google Scholar 

  75. Alzheimer’s Association (2013) Alzheimer’s disease facts and figures. Alzheimer’s Dement 9:110–133

    Google Scholar 

  76. National Institute for Health and Clinical Excellence (2011) Donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s Disease. Natl Inst Heal Clin Excell 5:1–84

    Google Scholar 

  77. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402(6761):537–540

    Article  CAS  PubMed  Google Scholar 

  78. Cole SL, Vassar R (2007) The Alzheimer’s disease Beta-secretase enzyme, BACE1. Mol Neurodegener 2(1):22–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 4(3):231–232

    Article  CAS  PubMed  Google Scholar 

  80. Ghosh AK, Bilcer G, Harwood C, Kawahama R, Shin D, Hussain KA, Hong L, Loy JA, Nguyen C, Koelsch G, Ermolieff J, Tang J (2001) Structure-based design: potent inhibitors of human brain memapsin 2 (beta-secretase). J Med Chem 44(18):2865–2868

    Google Scholar 

  81. Congreve M, Aharony D, Albert J, Callaghan O, Campbell J, Carr RA, Chessari G, Cowan S, Edwards PD, Frederickson M, McMenamin R, Murray CW, Patel S, Murray WN, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of beta-secretase. J Med Chem 50(6):1124–1132

    Google Scholar 

  82. Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, Campbell JB, Carr RA, Chessari G, Congreve M, Frederickson M, Folmer RH, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Murray CW, Olsson LL, Patel S, Spear N, Tian G (2007) Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J Med Chem 50(24):5912–5925

    Article  CAS  PubMed  Google Scholar 

  83. Geschwindner S, Olsson LL, Albert JS, Deinum J, Edwards PD, de Beer T, Folmer RH (2007) Discovery of a novel warhead against beta-secretase through fragment-based lead generation. J Med Chem 50(24):5903–5911

    Article  CAS  PubMed  Google Scholar 

  84. Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47(14):3463–3482

    Google Scholar 

  85. Godemann R, Madden J, Krämer J, Smith M, Fritz U, Hesterkamp T, Barker J, Höppner S, Hallett D, Cesura A, Ebneth A, Kemp J (2009) Fragment-based discovery of BACE1 inhibitors using functional assays. Biochemistry 48(45):10743–10751

    Article  CAS  PubMed  Google Scholar 

  86. Madden J, Dod JR, Godemann R, Kraemer J, Smith M, Biniszkiewicz M, Hallett DJ, Barker J, Dyekjaer JD, Hesterkamp T (2010) Fragment-based discovery and optimization of BACE1 inhibitors. Bioorganic Med Chem Lett 20(17):5329–5333

    Article  CAS  Google Scholar 

  87. Zhu Z, Sun ZY, Ye Y, Voigt J, Strickland C, Smith EM, Cumming J, Wang L, Wong J, Wang YS, Wyss DF, Chen X, Kuvelkar R, Kennedy ME, Favreau L, Parker E, McKittrick BA, Stamford A, Czarniecki M, Greenlee W, Hunter JC (2010) Discovery of cyclic acylguanidines as highly potent and selective beta-site amyloid cleaving enzyme (BACE) inhibitors: Part I—Inhibitor design and validation. J Med Chem 53(3):951–965

    Article  CAS  PubMed  Google Scholar 

  88. Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N (2007) Fragment screening by X-ray crystallography to b-secretase. J Med Chem 50(6):1116–1123

    Article  CAS  PubMed  Google Scholar 

  89. Cheng Y, Judd TC, Bartberger MD, Brown J, Chen K, Fremeau RT Jr, Hickman D, Hitchcock SA, Jordan B, Li V, Lopez P, Louie SW, Luo Y, Michelsen K, Nixey T, Powers TS, Rattan C, Sickmier EA, St Jean DJ Jr, Wahl RC, Wen PH, Wood S (2011) From fragment screening to in vivo efficacy: optimization of a series of 2-aminoquinolines as potent inhibitors of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). J Med Chem 54:5836–5857

    Google Scholar 

  90. Jeppsson F, Eketjäll S, Janson J, Karlström S, Gustavsson S, Olsson LL, Radesäter AC, Ploeger B, Cebers G, Kolmodin K, Swahn BM, von Berg S, Bueters T, Fälting J (2012) Discovery of AZD3839, a potent and selective BACE1 inhibitor clinical candidate for the treatment of alzheimer disease. Publ JBC Pap Press 287(49):41245–41257

    CAS  Google Scholar 

  91. Malamas MS, Erdei J, Gunawan I, Barnes K, Johnson M, Hui Y, Turner J, Hu Y, Wagner E, Fan K, Olland A, Bard J, Robichaud AJ (2009) Aminoimidazoles as potent and selective human beta-secretase (BACE1) inhibitors. J Med Chem 52(20):6314–6323

    Article  CAS  PubMed  Google Scholar 

  92. Huang H, La DS, Cheng AC, Whittington DA, Patel VF, Chen K (1998) Structure-and property-based design of aminooxazoline xanthenes as selective, orally efficacious, and CNS penetrable BACE inhibitors for the treatment of Alzheimer’s disease. J Med Chem 9(4):366–369

    Google Scholar 

  93. Hilpert H, Guba W, Woltering TJ, Wostl W, Pinard E, Mauser H, Mayweg AV, Rogers-Evans M, Humm R, Krummenacher D, Muser T, Schnider C, Jacobsen H, Ozmen L, Bergadano A, Banner DW, Hochstrasser R, Kuglstatter A, David-Pierson P, Fischer H, Polara A, Narquizian R (2013) β‑secretase (BACE1) inhibitors with high in vivo efficacy suitable for clinical evaluation in Alzheimer’s disease. J Med Chem 56(2–4):3980–3995

    Google Scholar 

  94. Malamas MS, Barnes K, Hui Y, Johnson M, Lovering F, Condon J, Fobare W, Solvibile W, Turner J, Hu Y, Manas ES, Fan K, Olland A, Chopra R, Bard J, Pangalos MN, Reinhart P, Robichaud AJ (2010) Novel pyrrolyl 2-aminopyridines as potent and selective human b-secretase (BACE1) inhibitors. Bioorg Med Chem Lett 20:2068–2073

    Article  CAS  PubMed  Google Scholar 

  95. Wang YS, Strickland C, Voigt JH, Kennedy ME, Beyer BM, Senior MM, Smith EM, Nechuta TL, Madison VS, Czarniecki M, McKittrick BA, Stamford AW, Parker EM, Hunter JC, Greenlee WJ, Wyss DF (2010) Application of fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design to identify novel μM leads for the development of nM BACE-1 (β-site APP cleaving enzyme 1) inhibitors. J Med Chem Med Chem 53(53):942–950

    Article  CAS  Google Scholar 

  96. Congreve M, Aharony D, Albert J, Callaghan O, Campbell J, Carr RA, Chessari G, Cowan S, Edwards PD, Frederickson M, McMenamin R, Murray CW, Patel S, Wallis N (2006) Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of β-secretase. J Med Chem 20:2068–2073

    Google Scholar 

  97. Fujitani H, Tanida Y, Matsuura A et al (2009) Massively parallel computation of absolute binding free energy with well-equilibrated states. Phys Rev E 79:021914

    Article  CAS  Google Scholar 

  98. Araki M, Kamiya N, Sato M et al (2016) The effect of conformational flexibility on binding free energy estimation between kinases and their inhibitors. J Chem Inf Model 56:2445–2456

    Article  CAS  PubMed  Google Scholar 

  99. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol Inform 31:114–122

    Article  CAS  PubMed  Google Scholar 

  101. Nakajima N, Nakamura H, Kidera A (1997) Multicanonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides. J Phys Chem B 101:817–824

    Article  CAS  Google Scholar 

  102. Bekker GJ, Kamiya N, Araki M et al (2017) Accurate prediction of complex structure and affinity for a flexible protein receptor and its inhibitor. J Chem Theory Comput 13:2389–2399

    Article  CAS  PubMed  Google Scholar 

  103. Heifetz A, Chudyk EI, Gleave L et al (2016) The fragment molecular orbital method reveals new insight into the chemical nature of GPCR−ligand interactions. J Chem Inf Model 56:159–172

    Article  CAS  PubMed  Google Scholar 

  104. Watanabe C, Watanabe H, Fukuzawa K et al (2017) Theoretical analysis of activity cliffs among benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics Poisson-Boltzman surface area (FMO+MM-PBSA) approach. J Chem Inf Model 57:2996–3010

    Article  CAS  PubMed  Google Scholar 

  105. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  106. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  107. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  108. Ozawa T, Okazaki K, Kitaura K (2011) CH/π hydrogen bonds play a role in ligand recognition and equilibrium between active and inactive states of the β2 adrenergic receptor: an ab initio fragment molecular orbital (FMO) study. Bioorg Med Chem 19:5231–5237

    Article  CAS  PubMed  Google Scholar 

  109. Ozawa T, Okazaki K (2008) CH/π hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study. J Comput Chem 29:2656–2666

    Article  CAS  PubMed  Google Scholar 

  110. https://drugdesign.riken.jp/FMODB/

  111. https://www.phenix-online.org/presentations/latest/pavel_refinement_general.pdf

  112. Nishimoto Y, Fedorov DG, Irle S (2014) Density-functional tight-binding combined with the fragment molecular orbital method. J Chem Theory Comput 10(11):4801–4812

    Article  CAS  PubMed  Google Scholar 

  113. Gastegger M, Marquetand P (2015) High-dimensional neural network potentials for organic reactions and an improved training algorithm. J Chem Theory Comput 11(5):2187–2198

    Google Scholar 

  114. Morawietz T, Singraber A, Dellago C, Behler J (2016) How van der Waals interactions determine the unique properties of water. PNAS 113(30):8368–8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Honma T, Mizuguchi K (2018) Life intelligence consortium. Nihon Yakugaku-kaishi Pharmacia 54(11)

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Tatsuya Takagi, Dr. Midori Kamimura, and Dr. Tomonaga Ozawa for managing FMODD and for conducting many research discussions. The authors also thank Dr. Chiduru Watanabe and Dr. Yoshio Okiyama for FMO calculations and assistance in the preparation of figures. The results of FMO calculations were obtained using the HPCI system including the K computer at RIKEN, TSUBAME 3.0 at the Tokyo Institute of Technology, and FX100 at Nagoya University (project IDs: hp150160, hp160103, hp170183, hp180147, hp190119, and hp190133). Prof. Yuji Mochizuki supported the use of the ABINIT-MP program on HPCI. PIEDA calculations were conducted using the MIZUHO/BioStation software package. This research was partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP20am0101113. The docking poses from Chapter 8.6 were provided by Dr. Mitsugu Araki and coworkers from the KBDD project by the Biogrid pharma consortium. K computer project IDs: hp150025, hp160010, and hp170036. The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Fukuzawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukuzawa, K. et al. (2021). FMO Drug Design Consortium. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_8

Download citation

Publish with us

Policies and ethics