Skip to main content

PAICS: Development of an Open-Source Software of Fragment Molecular Orbital Method for Biomolecule

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method

Abstract

PAICS is an open-source software available for fragment molecular orbital (FMO) calculation. A notable characteristic of PAICS is the capability to use the resolution of the identity (RI) approximation with the FMO scheme. Second-order Møller–Plesset perturbation theory with the RI approximation (RI-MP2) was implemented in PAICS, demonstrating that electron correlation energy of biomolecules could be efficiently calculated. Recently, third-order Møller–Plesset perturbation theory with the RI approximation (RI-MP3) was implemented, which enables us to calculate higher order electron correlation energy of biomolecules in a reasonable computational time. This chapter introduces the development of PAICS, by focusing on the FMO-RI-MP2 and MP3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  2. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  3. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904–6914

    Article  CAS  Google Scholar 

  4. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344

    Article  CAS  Google Scholar 

  5. Fedorov D, Kitaura K (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press

    Google Scholar 

  6. Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601

    Article  CAS  Google Scholar 

  7. PAICS. https://www.paics.net/

  8. Ishikawa T, Kuwata K (2009a) Interaction analysis of the native structure of prion protein with quantum chemical calculations. J Chem Theory Comput 6:538–547

    Article  Google Scholar 

  9. Ishikawa T, Burri RR, Kamatari YO, Sakuraba S, Matubayasi N, Kitao A, Kuwata K (2013) A theoretical study of the two binding modes between lysozyme and tri-NAG with an explicit solvent model based on the fragment molecular orbital method. Phys Chem Chem Phys 15:3646–3654

    Article  CAS  Google Scholar 

  10. Itoh Y, Sando A, Ikeda K, Suzuki T, Tokiwa H (2012) Origin of the inhibitory activity of 4-O-substituted sialic derivatives of human parainfluenza virus. Glycoconjugate J 29:231–237

    Article  CAS  Google Scholar 

  11. Arulmozhiraja S, Matsuo N, Ishitsubo E, Okazaki S, Shimano H, Tokiwa H (2016) Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs–an ab initio fragment molecular orbital study. PLoS ONE 11:e0166275

    Article  Google Scholar 

  12. Oku H, Inafuku M, Ishikawa T, Takamine T, Ishmael M, Fukuta M (2015) Molecular cloning and biochemical characterization of isoprene synthases from the tropical trees Ficus virgata, Ficus septica, and Casuarina equisetifolia. J Plant Res 128:849–861

    Article  CAS  Google Scholar 

  13. Ishikawa T (2018) Ab initio quantum chemical calculation of electron density, electrostatic potential, and electric field of biomolecule based on fragment molecular orbital method. Int J Quantum Chem 118:e25535

    Article  Google Scholar 

  14. Sriwilaijaroen N, Magesh S, Imamura A, Ando H, Ishida H, Sakai M, Ishitsubo E, Hori T, Moriya S, Ishikawa T, Kuwata K, Odagiri T, Tashiro M, Hiramatsu H, Tsukamoto K, Miyagi T, Tokiwa H, Kiso M, Suzuki Y (2016) A novel potent and highly specific inhibitor against influenza viral N1–N9 neuraminidases: insight into neuraminidase–inhibitor interactions. J Med Chem 59:4563–4577

    Article  CAS  Google Scholar 

  15. Ma B, Yamaguchi K, Fukuoka M, Kuwata K (2016) Logical design of anti-prion agents using NAGARA. Biochem Biophys Res Commun 469:930–935

    Article  CAS  Google Scholar 

  16. Ishibashi D, Nakagaki T, Ishikawa T, Atarashi R, Watanabe K, Cruz FA, Hamada T, Nishida N (2016) Structure-based drug discovery for prion disease using a novel binding simulation. EBioMedicine 9:238–249

    Article  Google Scholar 

  17. Makau JN, Watanabe K, Ishikawa T, Mizuta S, Hamada T, Kobayashi N, Nishida N (2017) Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches. PLoS ONE 12:e0173582

    Article  Google Scholar 

  18. Ishikawa T, Mizuta S, Kaneko O, Yahata K (2018) Fragment molecular orbital study of the interaction between sarco/endoplasmic reticulum Ca2+-ATPase and its inhibitor Thapsigargin toward anti-malarial development. J Phys Chem B 122:7970–7977

    Article  CAS  Google Scholar 

  19. Yamaguchi K, Kamatari YO, Ono F, Shibata H, Fuse T, Elhelaly AE, Fukuoka M, Kimura T, Hoshokawa-Muto J, Ishikawa T, Tobiume M, Takeuchia Y, Matsuyama Y, Ishibashi D, Nishida N, Kuwata K (2019) A designer molecular chaperone against transmissible spongiform encephalopathy slows disease progression in mice and macaques. Nat Biomed Eng 3:206–219

    Article  CAS  Google Scholar 

  20. Feyereisen M, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208:359–363

    Article  CAS  Google Scholar 

  21. Weigend F, Häser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc 97:331–340

    Article  CAS  Google Scholar 

  22. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294:143–152

    Article  CAS  Google Scholar 

  23. Ishikawa T, Kuwata K (2009b) Fragment molecular orbital calculation using the RI-MP2 method. Chem Phys Lett 474:195–198

    Article  CAS  Google Scholar 

  24. Ishikawa T, Kuwata K (2012) RI-MP2 gradient calculation of large molecules using the fragment molecular orbital method. J Phys Chem Lett 3:375–379

    Article  CAS  Google Scholar 

  25. Ishikawa T, Sakakura K, Mochizuki Y (2018) RI-MP3 calculations of biomolecules based on the fragment molecular orbital method. J Comput Chem 39:1970–1978

    Article  CAS  Google Scholar 

  26. Okamoto T, Ishikawa T, Koyano Y, Yamamoto N, Kuwata K, Nagaoka M (2013) A minimal implementation of the AMBER-PAICS interface for ab initio FMO-QM/MM-MD simulation. Bull Chem Soc Jpn 86:210–222

    Article  CAS  Google Scholar 

  27. Whitten JL, Allen LC (1965) Method for computing multicenter one-and two-electron integrals. J Chem Phys 43:S170–S171

    Article  CAS  Google Scholar 

  28. Dunlap BI, Connolly JWD, Sabin JR (1979) On some approximations in applications of X α theory. J Chem Phys 71:3396–3402

    Article  CAS  Google Scholar 

  29. Vahtras O, Almlöf J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518

    Article  CAS  Google Scholar 

  30. Bartlett RJ, Silver DM (1975) Many-body perturbation theory applied to electron pair correlation energies. I. Closed-shell first-row diatomic hydrides. J Chem Phys 62:3258–3268

    Article  CAS  Google Scholar 

  31. Urban M, Kellö V (1979) Applications of perturbation theory to the chemical problems potential energy curves of BH, F2 and N2. Mol Phys 38:1621–1633

    Article  CAS  Google Scholar 

  32. Kuwata K, Nishida N, Matsumoto T, Kamatari YO, Hosokawa-Muto J, Kodama K, Nakamura HK, Kimura K, Kawasaki M, Takakura Y, Shirabe S, Tanaka J, Kataoka Y, Katamine S (2007) Hot spots in prion protein for pathogenic conversion. Proc Nat Acad Sci 104:11921–11926

    Article  CAS  Google Scholar 

  33. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  34. Weigend F, Köhn A, Hättig C (2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J Chem Phys 116:3175–3183

    Article  CAS  Google Scholar 

  35. Pitoňák M, Neogrady P, Černý J, Grimme S, Hobza P (2009) Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD (T) benchmark data. ChemPhysChem 10:282–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, T. (2021). PAICS: Development of an Open-Source Software of Fragment Molecular Orbital Method for Biomolecule. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_5

Download citation

Publish with us

Policies and ethics