Skip to main content

Recent Development of the Fragment Molecular Orbital Method in GAMESS

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method

Abstract

The development of the fragment molecular orbital (FMO) method in GAMESS is reviewed, summarizing implemented physical properties and computational methods. Algorithmic improvements of FMO to reduce memory requirements and to describe dipole moments in solution are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kussmann J, Beer M, Ochsenfeld C (2013) Linear-scaling self-consistent field methods for large molecules. WIREs: Comput Mol Sci 3:614–636

    Google Scholar 

  2. Akimov AV, Prezhdo OV (2015) Large-scale computations in chemistry: a bird’s eye view of a vibrant field. Chem Rev 115:5797–5890

    Article  CAS  PubMed  Google Scholar 

  3. Gordon MS, Pruitt SR, Fedorov DG, Slipchenko LV (2012) Fragmentation methods: a route to accurate calculations on large systems. Chem Rev 112:632–672

    Article  CAS  PubMed  Google Scholar 

  4. Gao J, Truhlar DG, Wang Y, Mazack MJM, Löffler P, Provorse MR, Rehak P (2014) Explicit polarization: a quantum mechanical framework for developing next generation force fields. Acc Chem Res 47:2837–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collins MA, Bettens RPA (2015) Energy-based molecular fragmentation methods. Chem Rev 115:5607–5642

    Article  CAS  PubMed  Google Scholar 

  6. Raghavachari K, Saha A (2015) Accurate composite and fragment-based quantum chemical models for large molecules. Chem Rev 115:5643–5677

    Article  CAS  PubMed  Google Scholar 

  7. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  8. Sugiki S, Kurita N, Sengoku Y, Sekino H (2003) Fragment molecular orbital method with density functional theory and DIIS convergence acceleration. Chem Phys Lett 382:611–617

    Article  CAS  Google Scholar 

  9. Komeiji Y, Inadomi Y, Nakano T (2004) PEACH 4 with ABINIT-MP: a general platform for classical and quantum simulations of biological molecules. Comput Biol Chem 28:155–161

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601

    Article  CAS  PubMed  Google Scholar 

  11. Takami T, Maki J, Ooba J, Inadomi Y, Honda H, Susukita R, Inoue K, Kobayashi T, Nogita R, Aoyagi M (2007) Multi-physics extension of OpenFMO framework. AIP Conf Proc 963:122–125

    Article  Google Scholar 

  12. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  13. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (Eds) Theory and applications of computational chemistry, the first forty years, Chapter 41. Elsevier, Amsterdam, pp 1167–1189

    Google Scholar 

  14. GAMESS homepage. https://www.msg.ameslab.gov/gamess/index.html. Accessed 20 March 2019

  15. Fedorov DG, Kitaura K (2004) The importance of three-body terms in the fragment molecular orbital method. J Chem Phys 120:6832–6840

    Google Scholar 

  16. Alexeev Y, Mazanetz MP, Ichihara O, Fedorov DG (2012) GAMESS as a free quantum-mechanical platform for drug research. Curr Top Med Chem 12:2013–2033

    Article  CAS  PubMed  Google Scholar 

  17. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem a 111:6904–6914

    Google Scholar 

  18. Fedorov DG, Nagata T, Kitaura K (2012) Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 14:7562–7577

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344

    Article  CAS  PubMed  Google Scholar 

  20. Fedorov DG (2017) The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. WIREs: Comput Mol Sci 7:e1322

    Google Scholar 

  21. Fedorov DG, Kitaura K (eds) (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca Raton, FL

    Google Scholar 

  22. Fedorov DG, Asada N, Nakanishi I, Kitaura K (2014) The use of many-body expansions and geometry optimizations in fragment-based methods. Acc Chem Res 47:2846–2856

    Article  CAS  PubMed  Google Scholar 

  23. Chiba M, Fedorov DG, Kitaura K (2007) Time-dependent density functional theory with the multilayer fragment molecular orbital method. Chem Phys Lett 444:346–350

    Article  CAS  Google Scholar 

  24. Alexeev Y, Fedorov DG, Shvartsburg AA (2014) Effective ion mobility calculations for macromolecules by scattering on electron clouds. J Phys Chem A 118:6763–6772

    Article  CAS  PubMed  Google Scholar 

  25. Nakano T, Mochizuki Y, Yamashita K, Watanabe C, Fukuzawa K, Segawa K, Okiyama Y, Tsukamoto T, Tanaka S (2012) Development of the four-body corrected fragment molecular orbital (FMO4) method. Chem Phys Lett 523:128–133

    Article  CAS  Google Scholar 

  26. Yasuda K, Yamaki D (2006) The extension of the fragment molecular orbital method with the many-particle Green’s function. J Chem Phys 125:154101

    Article  PubMed  CAS  Google Scholar 

  27. Fedorov DG, Kitaura K (2005) Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. J Chem Phys 122:054108

    Google Scholar 

  28. Mochizuki Y, Koikegami S, Amari S, Segawa K, Kitaura K, Nakano T (2005) Configuration interaction singles method with multilayer fragment molecular orbital scheme. Chem Phys Lett 406:283–288

    Article  CAS  Google Scholar 

  29. Nakata H, Schmidt MW, Fedorov DG, Kitaura K, Nakamura S, Gordon MS (2014) Efficient molecular dynamics simulations of multiple radical center systems based on the fragment molecular orbital method. J Phys Chem A 118:9762–9771

    Article  CAS  PubMed  Google Scholar 

  30. Polyakov IV, Khrenova MG, Moskovsky AA, Shabanov BM, Nemukhin AV (2018) Towards first-principles calculation of electronic excitations in the ring of the protein-bound bacteriochlorophylls. Chem Phys 505:34–39

    Article  CAS  Google Scholar 

  31. Fujita T, Mochizuki Y (2018) Development of the fragment molecular orbital method for calculating nonlocal excitations in large molecular systems. J Phys Chem A 122:3886–3898

    Article  CAS  PubMed  Google Scholar 

  32. Suenaga M (2008) Development of GUI for GAMESS/FMO calculation. J Comput Chem Jpn 7:33–54 (in Japanese)

    Article  CAS  Google Scholar 

  33. Fedorov DG, Kitaura K (2017) Modeling and visualization for the fragment molecular orbital method with the graphical user interface FU, and analyses of protein-ligand binding. In: Gordon MS (ed) Fragmentation: toward accurate calculations on complex molecular systems. Wiley, Hoboken, pp 119–139

    Google Scholar 

  34. Steinmann C, Ibsen MW, Hansen AS, Jensen JH (2012) FragIt: a tool to prepare input files for fragment based quantum chemical calculations. PLoS ONE 7:e44480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fujita T, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S (2009) Accuracy of fragmentation in ab initio calculations of hydrated sodium cation. Chem Phys Lett 478:295–300

    Article  CAS  Google Scholar 

  36. Avramov PV, Fedorov DG, Sorokin PB, Sakai S, Entani S, Ohtomo M, Matsumoto Y, Naramoto H (2012) Intrinsic edge asymmetry in narrow zigzag hexagonal heteroatomic nanoribbons causes their subtle uniform curvature. J Phys Chem Lett 3:2003–2008

    Article  CAS  Google Scholar 

  37. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318:614–618

    Article  CAS  Google Scholar 

  38. Nagata T, Fedorov DG, Kitaura K (2010) Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method. Chem Phys Lett 492:302–308

    Article  CAS  Google Scholar 

  39. Fedorov DG, Jensen JH, Deka RC, Kitaura K (2008) Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. J Phys Chem A 112:11808–11816

    Article  CAS  PubMed  Google Scholar 

  40. Fedorov DG, Avramov PV, Jensen JH, Kitaura K (2009) Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method. Chem Phys Lett 477:169–175

    Article  CAS  Google Scholar 

  41. Nishimoto Y, Fedorov DG (2018) Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. J Chem Phys 148:064115

    Article  PubMed  CAS  Google Scholar 

  42. Roskop L, Fedorov DG, Gordon MS (2013) Diffusion energy profiles in silica mesoporous molecular sieves modelled with the fragment molecular orbital method. Mol Phys 111:1622–1629

    Article  CAS  Google Scholar 

  43. Fujino I, Fedorov DG, Kitaura K, Hirose H, Nakayama N (2015) Fragment molecular orbital simulations of organic charge transport materials: a feasibility study. J Imag Soc Jpn 54:554–560

    CAS  Google Scholar 

  44. Nagata T, Brorsen K, Fedorov DG, Kitaura K, Gordon MS (2011) Fully analytic energy gradient in the fragment molecular orbital method. J Chem Phys 134:124115

    Article  PubMed  CAS  Google Scholar 

  45. Nishimoto Y, Fedorov DG, Irle S (2014) Density-functional tight-binding combined with the fragment molecular orbital method. J Chem Theory Comput 10:4801–4812

    Article  CAS  PubMed  Google Scholar 

  46. Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S (2013) Analytic second derivatives of the energy in the fragment molecular orbital method. J Chem Phys 138:164103

    Article  PubMed  CAS  Google Scholar 

  47. Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S (2014) Simulations of Raman spectra using the fragment molecular orbital method. J Chem Theory Comput 10:3689–3698

    Google Scholar 

  48. Fedorov DG, Kitaura K (2009) The role of the exchange in the embedding electrostatic potential for the fragment molecular orbital method. J Chem Phys 131:171106

    Google Scholar 

  49. Fedorov DG, Kitaura K (2017) Many-body expansion of the Fock matrix in the fragment molecular orbital method. J Chem Phys 147:104106

    Google Scholar 

  50. Fedorov DG, Ishida T, Kitaura K (2005) Multilayer formulation of the fragment molecular orbital method (FMO). J Phys Chem A 109:2638–2646

    Article  CAS  PubMed  Google Scholar 

  51. Fedorov DG, Kitaura K (2014) Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method. Chem Phys Lett 597:99–105

    Article  CAS  Google Scholar 

  52. Steinmann C, Fedorov DG, Jensen JH (2010) Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods. J Phys Chem A 114:8705–8712

    Article  CAS  PubMed  Google Scholar 

  53. Steinmann C, Fedorov DG, Jensen JH (2012) The effective fragment molecular orbital method for fragments connected by covalent bonds. PLoS ONE 7:e41117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Steinmann C, Fedorov DG, Jensen JH (2013) Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio bio-chemistry. PLoS ONE 8:e60602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pruitt SR, Steinmann C, Jensen JH, Gordon MS (2013) Fully integrated effective fragment molecular orbital method. J Chem Theory Comput 9:2235–2249

    Article  CAS  PubMed  Google Scholar 

  56. Christensen AS, Steinmann C, Fedorov DG, Jensen JH (2014) Hybrid RHF/MP2 geometry optimizations with the effective fragment molecular orbital method. PLoS ONE 9:e88800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bertoni C, Gordon MS (2016) Analytic gradients for the effective fragment molecular orbital method. J Chem Theory Comput 12:4743–4767

    Article  CAS  PubMed  Google Scholar 

  58. Fedorov DG, Alexeev Y, Kitaura K (2011) Geometry optimization of the active site of a large system with the fragment molecular orbital method. J Phys Chem Lett 2:282–288

    Article  CAS  Google Scholar 

  59. Nakata H, Fedorov DG, Nagata T, Kitaura K, Nakamura S (2015) Simulations of chemical reactions with the frozen domain formulation of the fragment molecular orbital method. J Chem Theory Comput 11:3053–3064

    Article  CAS  PubMed  Google Scholar 

  60. Nakata H, Fedorov DG (2016) Efficient geometry optimization of large molecular systems in solution using the fragment molecular orbital method. J Phys Chem A 120:9794–9804

    Article  CAS  PubMed  Google Scholar 

  61. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237

    Google Scholar 

  62. Fedorov DG, Kitaura K (2006) Theoretical development of the fragment molecular orbital (FMO) method. In: Starikov EB, Lewis JP, Tanaka S (eds) Modern methods for theoretical physical chemistry of biopolymers. Elsevier, Amsterdam, pp 3–38

    Google Scholar 

  63. Watanabe C, Fukuzawa K, Okiyama Y, Tsukamoto T, Kato A, Tanaka S, Mochizuki Y, Nakano T (2013) Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. J Mod Graph Model 41:31–42

    Article  CAS  Google Scholar 

  64. Nagata T, Fedorov DG, Sawada T, Kitaura K (2012) Analysis of solute-solvent interactions in the fragment molecular orbital method interfaced with effective fragment potentials: theory and application to a solvated griffithsin-carbohydrate complex. J Phys Chem A 116:9088–9099

    Article  CAS  PubMed  Google Scholar 

  65. Fedorov DG, Kitaura K (2012) Energy decomposition analysis in solution based on the fragment molecular orbital method. J Phys Chem A 116:704–719

    Article  CAS  PubMed  Google Scholar 

  66. Green MC, Fedorov DG, Kitaura K, Francisco JS, Slipchenko LV (2013) Open-shell pair interaction energy decomposition analysis (PIEDA): formulation and application to the hydrogen abstraction in tripeptides. J Chem Phys 138:074111

    Article  PubMed  CAS  Google Scholar 

  67. Fedorov DG (2019) Solvent screening in zwitterions analyzed with the fragment molecular orbital method. J Chem Theory Comput 15:5404–5416.

    Google Scholar 

  68. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  69. Fedorov DG, Kromann JC, Jensen JH (2018) Empirical corrections and pair interaction energies in the fragment molecular orbital method. Chem Phys Lett 702:111–116

    Article  CAS  Google Scholar 

  70. Fedorov DG, Kitaura K (2016) Subsystem analysis for the fragment molecular orbital method and its application to protein-ligand binding in solution. J Phys Chem A 120:2218–2231

    Article  CAS  PubMed  Google Scholar 

  71. Xu P, Guidez EB, Bertoni C, Gordon MS (2018) Ab initio force field methods derived from quantum mechanics. J Chem Phys 148:090901

    Article  CAS  Google Scholar 

  72. Fedorov DG, Kitaura K (2018) Pair interaction energy decomposition analysis for density functional theory and density-functional tight-binding with an evaluation of energy fluctuations in molecular dynamics. J Phys Chem A 122:1781–1795

    Article  CAS  PubMed  Google Scholar 

  73. Vuong VQ, Nishimoto Y, Fedorov DG, Sumpter BG, Niehaus TA, Irle S (2019) The fragment molecular orbital method based on long-range corrected density-functional tight-binding. J Chem Theory Comput 15:3008–3020

    Article  CAS  PubMed  Google Scholar 

  74. Nagata T, Fedorov DG, Kitaura K, Gordon MS (2009) A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications. J Chem Phys 131:024101

    Google Scholar 

  75. Nagata T, Fedorov DG, Sawada T, Kitaura K, Gordon MS (2011) A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. J Chem Phys 134:034110

    Google Scholar 

  76. Nagata T, Fedorov DG, Kitaura K (2012) Analytic gradient and molecular dynamics simulations using the fragment molecular orbital method combined with effective potentials. Theor Chem Acc 131:1136

    Google Scholar 

  77. Fedorov DG, Kitaura K, Li H, Jensen J, Gordon M (2006) The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). J Comput Chem 27:976–985

    Article  CAS  PubMed  Google Scholar 

  78. Fedorov DG (2018) Analysis of solute-solvent interactions using the solvation model density combined with the fragment molecular orbital method. Chem Phys Lett 702:111–116

    Article  CAS  Google Scholar 

  79. Ponder JW (2018) TINKER 3.9. https://dasher.wustl.edu/tinker. Accessed 20 April 2018

  80. Fedorov DG, Ishida T, Uebayasi M, Kitaura K (2007) The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. J Phys Chem A 111:2722–2732

    Article  CAS  PubMed  Google Scholar 

  81. Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio+ molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  82. Lyne PD, Hodoscek M, Karplus M (1999) A hybrid QM-MM potential employing Hartree-Fock or density functional methods in the quantum region. J Phys Chem A 103:3462–3471

    Article  CAS  Google Scholar 

  83. Nagata T, Fedorov DG, Kitaura K (2011) Mathematical formulation of the fragment molecular orbital method. In: Zalesny R, Papadopoulos MG, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in computational chemistry and physics. Springer, New York, pp 17–64

    Chapter  Google Scholar 

  84. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  85. Fedorov DG, Kitaura K (2006) The three-body fragment molecular orbital method for accurate calculations of large systems. Chem Phys Lett 433:182–187

    Google Scholar 

  86. Nagata T, Fedorov DG, Kitaura K (2012) Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method. Chem Phys Lett 544:87–93

    Google Scholar 

  87. Kamiya M, Hirata S, Valiev M (2008) Fast electron correlation methods for molecular clusters without basis set superposition errors. J Chem Phys 128:074103

    Article  PubMed  CAS  Google Scholar 

  88. Fedorov DG, Slipchenko LV, Kitaura K (2010) Systematic study of the embedding potential description in the fragment molecular orbital method. J Phys Chem A 114:8742–8753

    Article  CAS  PubMed  Google Scholar 

  89. Asada N, Fedorov DG, Kitaura K, Nakanishi I, Merz KM Jr (2012) An efficient method to evaluate intermolecular interaction energies in large systems using overlapping multicenter ONIOM and the fragment molecular orbital method. J Phys Chem Lett 3:2604–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S (2014) Octahedral point-charge model and its application to fragment molecular orbital calculations of chemical shifts. Chem Phys Lett 593:165–173

    Article  CAS  Google Scholar 

  91. Fukunaga H, Fedorov DG, Chiba M, Nii K, Kitaura K (2008) Theoretical analysis of the intermolecular interaction effects on the excitation energy of organic pigments: solid state quinacridone. J Phys Chem A 112:10887–10894

    Article  CAS  PubMed  Google Scholar 

  92. Fujita T, Nakano T, Tanaka S (2011) Fragment molecular orbital calculations under periodic boundary condition. Chem Phys Lett 506:112–116

    Article  CAS  Google Scholar 

  93. Brorsen KR, Minezawa N, Xu F, Windus TL, Gordon MS (2012) Fragment molecular orbital molecular dynamics with the fully analytic energy gradient. J Chem Theory Comput 8:5008–5012

    Article  CAS  PubMed  Google Scholar 

  94. Choi CH, Fedorov DG (2012) Reducing the scaling of the fragment molecular orbital method using the multipole method. Chem Phys Lett 543:159–165

    Article  CAS  Google Scholar 

  95. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO). J Comput Chem 25:872–880

    Article  CAS  PubMed  Google Scholar 

  96. Ikegami T, Ishida T, Fedorov DG, Kitaura K, Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S (2005) Full electron calculation beyond 20,000 atoms: ground electronic state of photosynthetic proteins. In: Proceedings of the supercomputing 2005. IEEE computer society. Seattle

    Google Scholar 

  97. Alexeev Y, Mahajan A, Leyffer S, Fletcher G, Fedorov DG (2012) Heuristic static load-balancing algorithm applied to the fragment molecular orbital method. In: Proceedings of the supercomputing 2012. IEEE computer society. Salt Lake City

    Google Scholar 

  98. Talamudupula SK, Sosonkina M, Gaenko A, Schmidt MW (2012) Fragment molecular orbital method adaptations for heterogeneous computing platforms. Proc Comput Sci 9:489–497

    Article  Google Scholar 

  99. Fletcher GD, Fedorov DG, Pruitt SR, Windus TL, Gordon MS (2012) Large-scale MP2 calculations on the Blue Gene architecture using the fragment molecular orbital method. J Chem Theory Comput 8:75–79

    Article  CAS  PubMed  Google Scholar 

  100. Pruitt SR, Nakata H, Nagata T, Mayes M, Alexeev Y, Fletcher G, Fedorov DG, Kitaura K, Gordon MS (2016) Importance of three-body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method. J Chem Theory Comput 12:1423–1435

    Article  CAS  PubMed  Google Scholar 

  101. Mironov V, Alexeev Y, Fedorov DG, Umeda H, Pruitt S, Gaenko A, Gordon MS (2021) Multi-level parallelization of the fragment molecular orbital method in GAMESS. In: Mochizuki Y et al (Ed) Recent advances of the fragment molecular orbital method. Springer, Singapore (In press)

    Google Scholar 

  102. Mironov V, Alexeev Y, Fedorov DG (2019) Multi-threaded parallelization of the energy and analytic gradient in the fragment molecular orbital method. Int J Quant Chem 119:e25937

    Article  CAS  Google Scholar 

  103. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  104. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449–1458

    Article  CAS  Google Scholar 

  105. Morao I, Fedorov DG, Robinson R, Southey M, Townsend-Nicholson A, Bodkin MJ, Heifetz A (2017) Rapid and accurate assessment of GPCR-ligand interactions using the fragment molecular orbital-based density-functional tight-binding method. J Comput Chem 38:1987–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. He X, Fusti-Molnar L, Cui G, Merz KM Jr (2009) Importance of dispersion and electron correlation in ab initio protein folding. J Phys Chem B 113:5290–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Simoncini D, Nakata H, Ogata K, Nakamura S, Zhang KYJ (2015) Quality assessment of predicted protein models using energies calculated by the fragment molecular orbital method. Mol Inf 34:97–104

    Article  CAS  Google Scholar 

  108. Ito M, Brinck T (2014) Novel approach for identifying key residues in enzymatic reactions: proton abstraction in ketosterbid isomerase. J Phys Chem B 118:13050–13058

    Article  CAS  PubMed  Google Scholar 

  109. Pruitt SR, Steinmann C (2017) Mapping interaction energies in chorismate mutase with the fragment molecular orbital method. J Phys Chem A 121:1798–1808

    Article  CAS  Google Scholar 

  110. Pruitt SR, Brorsen KR, Gordon MS (2015) Ab initio investigation of the aqueous solvation of the nitrate ion. Phys Chem Chem Phys 17:27027–27034

    Article  CAS  PubMed  Google Scholar 

  111. Kistler KA, Matsika S (2009) Solvatochromic shifts of uracil and cytosine using a combined multireference configuration interaction/molecular dynamics approach and the fragment molecular orbital method. J Phys Chem A 113:12396–12403

    Article  CAS  PubMed  Google Scholar 

  112. Shigemitsu Y, Mutai T, Houjou H, Araki K (2014) Influence of intermolecular interactions on solid state luminescence of imidazopyridines: theoretical interpretations using FMO-TDDFT and ONIOM approaches. Phys Chem Chem Phys 16:14388–14395

    Article  CAS  PubMed  Google Scholar 

  113. Kitoh-Nishioka H, Welke K, Nishimoto Y, Fedorov DG, Irle S (2017) Multiscale simulations on charge transport in covalent organic frameworks including dynamics of transfer integrals from the FMO-DFTB/LCMO approach. J Phys Chem C 121:17712–17726

    Article  CAS  Google Scholar 

  114. Doi H, Okuwaki K, Mochizuki Y, Ozawa T, Yasuoka K (2017) Dissipative particle dynamics (DPD) simulations with fragment molecular orbital (FMO) based effective parameters for 1-palmitoyl-2-oleoyl phosphatidyl choline (POPC) membrane. Chem Phys Lett 684:427–432

    Article  CAS  Google Scholar 

  115. Mazanetz MP, Ichihara O, Law RJ, Whittaker M (2011) Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. J Cheminf 3:2

    Article  CAS  Google Scholar 

  116. Hitaoka S, Chuman H, Yoshizawa K (2015) A QSAR study on the inhibition mechanism of matrix metalloproteinase-12 by arylsulfone analogs based on molecular orbital calculations. Org Biomol Chem 13:793–806

    Article  CAS  PubMed  Google Scholar 

  117. Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S (2014) Derivatives of the approximated electrostatic potentials in unrestricted Hartree-Fock based on the fragment molecular orbital method and an application to polymer radicals. Theor Chem Acc 133:1477

    Google Scholar 

  118. Sawada T, Fedorov DG, Kitaura K (2009) Structural and interaction analysis of helical heparin oligosaccharides with the fragment molecular orbital method. Int J Quantum Chem 109:2033–2045

    Article  CAS  Google Scholar 

  119. Komeiji Y, Mochizuki Y, Nakano T, Fedorov DG (2009) Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems. J Mol Str: THEOCHEM 898:2–7

    Article  CAS  Google Scholar 

  120. Halat P, Seeger ZL, Acevedo SB, Izgorodina EI (2017) Trends in two- and three-body effects in multiscale clusters of ionic liquids. J Phys Chem B 121:577–588

    Article  CAS  PubMed  Google Scholar 

  121. Pruitt SR, Fedorov DG, Kitaura K, Gordon MS (2010) Open-shell formulation of the fragment molecular orbital method. J Chem Theory Comput 6:1–5

    Article  CAS  PubMed  Google Scholar 

  122. Pruitt SR, Fedorov DG, Gordon MS (2012) Geometry optimizations of open-shell systems with the fragment molecular orbital method. J Phys Chem A 116:4965–4974

    Article  CAS  PubMed  Google Scholar 

  123. Nakata H, Fedorov DG, Nagata T, Yokojima S, Ogata K, Kitaura K, Nakamura S (2012) Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient. J Chem Phys 137:044110

    Article  PubMed  CAS  Google Scholar 

  124. Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S (2014) Efficient vibrational analysis for unrestricted Hartree-Fock based on the fragment molecular orbital method. Chem Phys Lett 603:67–74

    Google Scholar 

  125. Nishimoto Y, Fedorov DG, Irle S (2015) Third-order density-functional tight-binding combined with the fragment molecular orbital method. Chem Phys Lett 636:90–96

    Article  CAS  Google Scholar 

  126. Nishimoto Y, Nakata H, Fedorov DG, Irle S (2015) Large-scale quantum-mechanical molecular dynamics simulations using density-functional tight-binding combined with the fragment molecular orbital method. J Phys Chem Lett 6:5034–5039

    Article  CAS  PubMed  Google Scholar 

  127. Nishimoto Y, Fedorov DG (2016) The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Phys Chem Chem Phys 18:22047–22061

    Article  CAS  PubMed  Google Scholar 

  128. Nakata H, Nishimoto Y, Fedorov DG (2016) Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method. J Chem Phys 145:044113

    Article  PubMed  CAS  Google Scholar 

  129. Nishimoto Y, Fedorov DG (2017) Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding. J Comput Chem 38:406–418

    Article  CAS  PubMed  Google Scholar 

  130. Fedorov DG, Kitaura K (2004) On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory. Chem Phys Lett 389:129–134

    Google Scholar 

  131. Nakata H, Fedorov DG, Yokojima S, Kitaura K, Sakurai M, Nakamura S (2014) Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems. J Chem Phys 140:144101

    Article  PubMed  CAS  Google Scholar 

  132. Brorsen KR, Zahariev F, Nakata H, Fedorov DG, Gordon MS (2014) Analytic gradient for density functional theory based on the fragment molecular orbital method. J Chem Theory Comput 10:5297–5307

    Article  CAS  PubMed  Google Scholar 

  133. Nakata H, Fedorov DG, Zahariev F, Schmidt MW, Kitaura K, Gordon MS, Nakamura S (2015) Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method. J Chem Phys 142:124101

    Article  PubMed  CAS  Google Scholar 

  134. Nakata H, Fedorov DG (2018) Analytic second derivatives for the efficient electrostatic embedding in the fragment molecular orbital method. J Comput Chem 39:2039–2050

    Article  CAS  PubMed  Google Scholar 

  135. Fedorov DG, Kitaura K (2004) Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. J Chem Phys 121:2483–2490

    Google Scholar 

  136. Fedorov DG, Ishimura K, Ishida T, Kitaura K, Pulay P, Nagase S (2007) Accuracy of the three-body fragment molecular orbital method applied to Møller-Plesset perturbation theory. J Comput Chem 28:1476–1484

    Article  CAS  PubMed  Google Scholar 

  137. Katouda M (2011) Application of resolution of identity approximation of second-order Møller-Plesset perturbation theory to three-body fragment molecular orbital method. Theor Chem Acc 130:449–453

    Article  CAS  Google Scholar 

  138. Nagata T, Fedorov DG, Ishimura K, Kitaura K (2011) Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method. J Chem Phys 135:044110

    Article  PubMed  CAS  Google Scholar 

  139. Green MC, Nakata H, Fedorov DG, Slipchenko LV (2016) Radical damage in lipids investigated with the fragment molecular orbital method. Chem Phys Lett 651:56–61

    Article  CAS  Google Scholar 

  140. Fedorov DG, Kitaura K (2005) Coupled-cluster theory based upon the fragment molecular-orbital method. J Chem Phys 123:134103

    Google Scholar 

  141. Findlater AD, Zahariev F, Gordon MS (2015) Combined fragment molecular orbital cluster in molecule approach to massively parallel electron correlation calculations for large systems. J Phys Chem A 119:3587–3593

    Article  CAS  PubMed  Google Scholar 

  142. Chiba M, Fedorov DG, Kitaura K (2008) Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory. J Comput Chem 29:2667–2676

    Article  CAS  PubMed  Google Scholar 

  143. Chiba M, Koido T (2010) Electronic excitation energy calculation by the fragment molecular orbital method with three-body effects. J Chem Phys 133:044113

    Article  PubMed  CAS  Google Scholar 

  144. Chiba M, Fedorov DG, Nagata T, Kitaura K (2009) Excited state geometry optimizations by time-dependent density functional theory based on the fragment molecular orbital method. Chem Phys Lett 474:227–232

    Article  CAS  Google Scholar 

  145. Ikegami T, Ishida T, Fedorov DG, Kitaura K, Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S (2010) Fragment molecular orbital study of the electronic excitations in the photosynthetic reaction center of blastochloris viridis. J Comput Chem 31:447–454

    CAS  PubMed  Google Scholar 

  146. Nakata H, Fedorov DG, Kitaura K, Nakamura S (2015) Extension of the fragment molecular orbital method to treat large open-shell systems in solution. Chem Phys Lett 635:86–92

    Article  CAS  Google Scholar 

  147. Li H, Fedorov DG, Nagata T, Kitaura K, Jensen JH, Gordon MS (2010) Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. J Comput Chem 31:778–790

    CAS  PubMed  Google Scholar 

  148. Nagata T, Fedorov DG, Li H, Kitaura K (2012) Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. J Chem Phys 136:204112

    Article  PubMed  CAS  Google Scholar 

  149. Nakata H, Fedorov DG (2019) Simulations of infrared and Raman spectra in solution using the fragment molecular orbital method. Phys Chem Chem Phys 21:13641–13652

    Article  CAS  PubMed  Google Scholar 

  150. Yoshida N (2014) Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method. J Chem Phys 140:214118

    Article  PubMed  CAS  Google Scholar 

  151. Mazanetz MP, Chudyk E, Fedorov DG, Alexeev Y (2016) Applications of the fragment molecular orbital method to drug research. In: Zhang W (ed) Computer aided drug discovery. Springer, New York, pp 217–255

    Google Scholar 

  152. Fedorov DG, Brekhov A, Mironov V, Alexeev Y (2019) Molecular electrostatic potential and electron density of large systems in solution computed with the fragment molecular orbital method. J Phys Chem A 123:6281–6290

    Article  CAS  PubMed  Google Scholar 

  153. Tsuneyuki S, Kobori T, Akagi K, Sodeyama K, Terakura K, Fukuyama H (2009) Molecular orbital calculation of biomolecules with fragment molecular orbitals. Chem Phys Lett 476:104–108

    Article  CAS  Google Scholar 

  154. Kobori T, Sodeyama K, Otsuka T, Tateyama Y, Tsuneyuki S (2013) Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. J Chem Phys 139:094113

    Article  PubMed  CAS  Google Scholar 

  155. Nebgen B, Prezhdo OV (2016) Fragment molecular orbital nonadiabatic molecular dynamics for condensed phase systems. J Phys Chem A 120:7205–7212

    Article  CAS  PubMed  Google Scholar 

  156. Gao Q, Yokojima S, Kohno T, Ishida T, Fedorov DG, Kitaura K, Fujihira M, Nakamura S (2007) Ab initio NMR chemical shift calculations on proteins using fragment molecular orbitals with electrostatic environment. Chem Phys Lett 445:331–339

    Article  CAS  Google Scholar 

  157. Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S (2010) Fragment-molecular-orbital-method-based ab initio NMR chemical-shift calculations for large molecular systems. J Chem Theory Comput 6:1428–1444

    Article  CAS  Google Scholar 

  158. Auer B, Pak MV, Hammes-Schiffer S (2010) Nuclear-electronic orbital method within the fragment molecular orbital approach. J Phys Chem C 114:5582–5588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Kazuo Kitaura for his guidance in implementing FMO in GAMESS and many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri G. Fedorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fedorov, D.G. (2021). Recent Development of the Fragment Molecular Orbital Method in GAMESS. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_3

Download citation

Publish with us

Policies and ethics