Skip to main content

Application of FMO for Protein–ligand Binding Affinity Prediction

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method
  • 606 Accesses

Abstract

The fragment molecular orbital (FMO) method has emerged as a powerful computational tool for structure-based drug design. Pair interaction energy decomposition analysis (PIEDA) enables detailed analysis of protein–ligand interactions, and many studies have shown that interaction energies can be used to predict protein–ligand binding affinities. However, the accuracy is insufficient for application to lead optimization. To increase the method’s accuracy, we introduce an ensemble FMO method in which molecular dynamics simulations are used to generate multiple protein–ligand complex structures, and FMO calculations are performed for ensembles of conformers with explicit water molecules. To assess the ensemble FMO method, we examined the correlations between experimental and calculated binding affinities of two systems, internal project A and Pim1 kinase. The correlations between experimental pIC50 values and FMO-based interaction energies in vacuo calculated based on MM-optimized X-ray crystal structures were R2 = 0.28 and R2 = 0.53 for internal project A and Pim1, respectively. Using the ensemble FMO method, the correlation for internal project A improved (R2 = 0.67), whereas the correlation for Pim1 was unchanged (R2 = 0.53). If combinations of different PIEDA energies were allowed, the best correlations for internal project A and Pim1 were R2 = 0.76 and R2 = 0.62, respectively. We also discuss the application of a reinforcement learning method, Best Arm Identification, in which the performance of the ensemble FMO method was maximized by avoiding unpromising compounds in the early stages to allocate limited computational resources to more-promising compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitaura K, Sawai T, Asada T et al (1999) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  2. Kitaura K, Ikeo E, Asada T et al (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  3. Nakano T, Kaminuma T, Satao T et al (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  4. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237

    Article  CAS  Google Scholar 

  5. Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27:249–284

    Article  CAS  Google Scholar 

  6. Bagal SK, Andrews M, Bechle BM et al (2018) Discovery of potent, selective, and peripherally restricted Pan-Trk kinase inhibitors for the treatment of pain. J Med Chem 61:6779–6800

    Article  CAS  Google Scholar 

  7. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    Article  CAS  Google Scholar 

  8. Fukuzawa K, Kitaura K, Uebayasi M et al (2005) Ab initio quantum mechanical study of the binding energies of human Estrogen receptor α with its ligands: an application of fragment molecular orbital method. J Comput Chem 26:1–10

    Article  CAS  Google Scholar 

  9. Heifetz A, Chudyk EI, Gleave L et al (2016) The Fragment molecular orbital method reveals new insight into the chemical nature of GPCR−ligand interactions. J Chem Inf Model 56:159–172

    Article  CAS  Google Scholar 

  10. Watanabe C, Watanabe H, Fukuzawa K et al (2017) Theoretical analysis of activity cliffs among Benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics poisson-Boltzman surface area (FMO+MM-PBSA) approach. J Chem Inf Model 57:2996–3010

    Article  CAS  Google Scholar 

  11. Lopes PEM, Guvench O, MacKerell AD (2015) Current status of protein force fields for molecular dynamics. Methods Mol Biol 1215:47–71

    Article  CAS  Google Scholar 

  12. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  13. Harder E, Damm W, Maple J et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    Article  CAS  Google Scholar 

  14. Ishikawa T, Kuwata K (2010) Interaction analysis of the native structure of prion protein with quantum chemical calculations. J Chem Theory Comput 6:538–547

    Article  CAS  Google Scholar 

  15. Fedorov DG, Kitaura K (2018) Pair interaction energy decomposition analysis for density functional theory and density-functional tight-binding with an evaluation of energy fluctuations in molecular dynamics. J Phys Chem A 122:1781–1795

    Article  CAS  Google Scholar 

  16. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of multiarmed bandit problem. Mach Learn 47:235–256

    Article  Google Scholar 

  17. Audibert J, Bubeck S, Munos R (2010) Best arm identification in multi-armed bandits. In: The 23rd annual conference on learning theory, dan Carmel hotel, Haifa, 27–29 June 2010

    Google Scholar 

  18. Gabillon V, Ghavamzadeh M, Lazaric A, Bubeck S (2011) Multi-bandit best arm identification. In: Twenty-fifth annual conference on neural information processing systems, Granada congress and exhibition centre, Granada, 12–17 December 2011

    Google Scholar 

  19. Sastry GM, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des 27:221–234

    Article  Google Scholar 

  20. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  21. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  22. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  23. Jakalian A, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I method. J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  24. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  26. Komeiji Y, Ishida T, Fedorov DG et al (2007) Change in a protein’s electronic structure induced by an explicit solvent: an ab initio fragment molecular orbital study of ubiquitin. J Comput Chem 28:1750–1762

    Article  CAS  Google Scholar 

  27. Fukuzawa K, Kurisaki I, Watanabe C et al (2015) Explicit solvation modulates intra- and inter-molecular interactions within DNA: electronic aspects revealed by the ab initio fragment molecular orbital (FMO) method. Comput Theor Chem 1054:29–37

    Article  CAS  Google Scholar 

  28. Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424–1444

    Article  CAS  Google Scholar 

  29. Terayama K, Iwata H, Araki M et al (2018) Machine learning accelerates MD-based binding pose prediction between ligands and proteins. Bioinformatics 34:770–778

    Article  Google Scholar 

  30. Gabillon V, Ghavamzadeh M, Lazaric A (2012) Best arm identification: a unified approach to fixed budget and fixed confidence. In: Twenty-sixth annual conference on neural information processing systems, Harrahs and Harveys, Lake Tahoe, 3–8 December 2012

    Google Scholar 

Download references

Acknowledgements

The author thanks Kazufumi Ohkawa for thoughtful discussions and assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Takaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takaba, K. (2021). Application of FMO for Protein–ligand Binding Affinity Prediction. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_13

Download citation

Publish with us

Policies and ethics