Skip to main content

Cooperative Study Combining X-ray Crystal Structure Analysis and FMO Calculation: Interaction Analysis of FABP4 Inhibitors

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method
  • 553 Accesses

Abstract

X-ray crystal structural determination of FABP4 in complex with four inhibitors revealed the binding modes of the complexes, and the interactions between FABP4 and the inhibitors were analyzed. The detailed structure–activity relationship (SAR) could not be explained in terms of these crystal structural observations. Therefore, the interactions between FABP4 and the inhibitors were analyzed in more detail using fragment molecular orbital (FMO) method. This analysis revealed that the total interfragment interaction energies between FABP4 and each inhibitor correlated with the ranking of the Ki value for the four inhibitors. Furthermore, the interactions between each inhibitor and specific amino acid residues in FABP4 were identified. The oxygen atom of Lys58 in FABP4 was found to be very important for strong inhibitor–protein interactions. These results might provide useful information for the development of novel potent FABP4 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. RCSB PDB Annual Report 2016

    Google Scholar 

  2. Mazanetz MP, Ichihara O, Law RJ, Whittaker M (2011) Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. J Cheminform 3(1):1–15

    Article  Google Scholar 

  3. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  4. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem a 111(30):6904–6914

    Article  CAS  Google Scholar 

  5. Fedorov DG, Nagata T, Kitaura K (2012) Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 14(21):7562–7577

    Article  CAS  Google Scholar 

  6. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Fragmentation methods: a route to accurate calculations on large systems. Chem Rev 112(1):632–672

    Article  CAS  Google Scholar 

  7. Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7(6):489–503

    Article  CAS  Google Scholar 

  8. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM (1996) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274(5291):1377–1379

    Article  CAS  Google Scholar 

  9. Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS (2000) Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141(9):3388–3396

    Article  CAS  Google Scholar 

  10. Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7(6):699–705

    Article  CAS  Google Scholar 

  11. Furuhashi M, Tuncman G, Gorgun CZ, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev VR, Fazio S, Linton MF, Sulsky R, Robl JA, Parker RA, Hotamisligil GS (2007) Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447(7147):959–965

    Article  CAS  Google Scholar 

  12. Lehmann F, Haile S, Axen E, Medina C, Uppenberg J, Svensson S, Lundback T, Rondahl L, Barf T (2004) Discovery of inhibitors of human adipocyte fatty acid-binding protein, a potential type 2 diabetes target. Bioorg Med Chem Lett 14(17):4445–4448

    Article  CAS  Google Scholar 

  13. Ringom R, Axen E, Uppenberg J, Lundback T, Rondahl L, Barf T (2004) Substituted benzylamino-6-(trifluoromethyl)pyrimidin-4(1H)-ones: a novel class of selective human A-FABP inhibitors. Bioorg Med Chem Lett 14(17):4449–4452

    Article  CAS  Google Scholar 

  14. Sulsky R, Magnin DR, Huang Y, Simpkins L, Taunk P, Patel M, Zhu Y, Stouch TR, Bassolino-Klimas D, Parker R, Harrity T, Stoffel R, Taylor DS, Lavoie TB, Kish K, Jacobson BL, Sheriff S, Adam LP, Ewing WR, Robl JA (2007) Potent and selective biphenyl azole inhibitors of adipocyte fatty acid binding protein (aFABP). Bioorg Med Chem Lett 17(12):3511–3515

    Article  CAS  Google Scholar 

  15. Barf T, Lehmann F, Hammer K, Haile S, Axen E, Medina C, Uppenberg J, Svensson S, Rondahl L, Lundback T (2009) N-Benzyl-indolo carboxylic acids: Design and synthesis of potent and selective adipocyte fatty-acid binding protein (A-FABP) inhibitors. Bioorg Med Chem Lett 19(6):1745–1748

    Article  CAS  Google Scholar 

  16. Hertzel AV, Hellberg K, Reynolds JM, Kruse AC, Juhlmann BE, Smith AJ, Sanders MA, Ohlendorf DH, Suttles J, Bernlohr DA (2009) Identification and characterization of a small molecule inhibitor of Fatty Acid binding proteins. J Med Chem 52(19):6024–6031

    Article  CAS  Google Scholar 

  17. Marr E, Tardie M, Carty M, Brown Phillips T, Wang IK, Soeller W, Qiu X, Karam G (2006) Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2). Acta Crystallogr Sect F Struct Biol Cryst Commun 62(Pt 11):1058–1060

    Article  CAS  Google Scholar 

  18. Ory J, Kane CD, Simpson MA, Banaszak LJ, Bernlohr DA (1997) Biochemical and crystallographic analyses of a portal mutant of the adipocyte lipid-binding protein. J Biol Chem 272:9793–9801

    Article  CAS  Google Scholar 

  19. Ory JJ, Banaszak LJ (1999) Studies of the ligand binding reaction of adipocyte lipid binding protein using the fluorescent probe 1, 8-anilinonaphthalene-8-sulfonate. Biophys J 77(2):1107–1116

    Article  CAS  Google Scholar 

  20. Ory JJ, Mazhary A, Kuang H, Davies RR, Distefano MD, Banaszak LJ (1998) Structural characterization of two synthetic catalysts based on adipocyte lipid-binding protein. Protein Eng 11(4):253–261

    Article  CAS  Google Scholar 

  21. Lalonde JM, Bernlohr DA, Banaszak LJ (1994) X-ray crystallographic structures of adipocyte lipid-binding protein complexed with palmitate and hexadecanesulfonic acid. Properties of Cavity Binding Sites. Biochemistry 33(16):4885–4895

    Article  CAS  Google Scholar 

  22. Lalonde JM, Levenson MA, Roe JJ, Bernlohr DA, Banaszak LJ (1994) Adipocyte lipid-binding protein complexed with arachidonic acid. Titration calorimetry and X-ray crystallographic studies. J Biol Chem 269(41):25339–25347

    Google Scholar 

  23. Xu Z, Bernlohr DA, Banaszak LJ (1993) The adipocyte lipid-binding protein at 1.6-A resolution. Crystal structures of the apoprotein and with bound saturated and unsaturated fatty acids. J Biol Chem 268(11):7874–7884

    Google Scholar 

  24. Xu Z, Bernlohr DA, Banaszak LJ (1992) Crystal structure of recombinant murine adipocyte lipid-binding protein. Biochemistry 31(13):3484–3492

    Article  CAS  Google Scholar 

  25. Xu ZH, Buelt MK, Banaszak LJ, Bernlohr DA (1991) Expression, purification, and crystallization of the adipocyte lipid binding protein. J Biol Chem 266(22):14367–14370

    CAS  PubMed  Google Scholar 

  26. Van Dongen MJ, Uppenberg J, Svensson S, Lundback T, Akerud T, Wikstrom M, Schultz J (2002) Structure-based screening as applied to human FABP4: a highly efficient alternative to HTS for hit generation. J Am Chem Soc 124(40):11874–11880

    Article  Google Scholar 

  27. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351(5–6):475–480

    Article  CAS  Google Scholar 

  28. Hitaoka S, Harada M, Yoshida T, Chuman H (2010) Correlation analyses on binding affinity of sialic acid analogues with influenza virus neuraminidase-1 using ab initio MO calculations on their complex structures. J Chem Inf Model 50(10):1796–1805

    Article  CAS  Google Scholar 

  29. Watanabe C, Fukuzawa K, Okiyama Y, Tsukamoto T, Kato A, Tanaka S, Mochizuki Y, Nakano T (2013) Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. J Mol Graph Model 41:31–42

    Article  CAS  Google Scholar 

  30. Wataru M, Masayuki S, Chieko E, Munetaka T, Tomomi Y, Sen T (2014) Indole derivative or salt thereof. Patent number WO2014003158

    Google Scholar 

  31. Tagami U, Takahashi K, Igarashi S, Ejima C, Yoshida T, Takeshita S, Miyanaga W, Sugiki M, Tokumasu M, Hatanaka T, Kashiwagi T, Ishikawa K, Miyano H, Mizukoshi T (2016) Interaction analysis of FABP4 inhibitors by X-ray crystallography and fragment molecular orbital analysis. ACS Med Chem Lett 7(4):435–439

    Article  CAS  Google Scholar 

  32. Feyereisen M, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208 5–6:359–363

    Google Scholar 

  33. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) A parallelized integral-direct second-order Moller-Plesset perturbation theory method with a fragment molecular orbital scheme. Theoret Chem Acc 112(5–6):442–452

    Article  CAS  Google Scholar 

  34. Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Large scale MP2 calculations with fragment molecular orbital scheme. Chem Phys Lett 396(4–6):473–479

    Article  CAS  Google Scholar 

  35. Fedorov DG, Kitaura K (2004) Second order Moller-Plesset perturbation theory based upon the fragment molecular orbital method. J Chem Phys 121(6):2483–2490

    Article  CAS  Google Scholar 

  36. Wang Y, Lin HQ, Law WK, Liang WC, Zhang JF, Hu JS, Ip TM, Waye MM, Wan DC (2015) Pimozide, a novel fatty acid binding protein 4 inhibitor, promotes adipogenesis of 3T3-L1 cells by activating PPARgamma. ACS Chem Neurosci 6(2):211–218

    Article  CAS  Google Scholar 

  37. Pierce AC, Sandretto KL, Bemis GW (2002) Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding. Proteins 49(4):567–576

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank EA Pharma Co., Ltd., Ajinomoto Co., Inc., and Photon Factory. They also thank Leo Holroyd, Ph.D., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uno Tagami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tagami, U., Takahashi, K. (2021). Cooperative Study Combining X-ray Crystal Structure Analysis and FMO Calculation: Interaction Analysis of FABP4 Inhibitors. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_12

Download citation

Publish with us

Policies and ethics