Skip to main content

Graphene Based Biopolymer Nanocomposite Applications in Drug Delivery

  • Chapter
  • First Online:
Graphene Based Biopolymer Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 439 Accesses

Abstract

In previous years graphene based material have found extensive uses in the field biotechnology and medical sciences including drug delivery. By virtue of their exceptional properties like two-dimensional planar structure, huge surface area, chemical, and mechanical stability, super conductivity and good biocompatibility. Graphene and graphene oxide have been predominantly analyzed as few of the supreme auspicious biomaterials for biomedical applications. These properties consequence in encouraging utilization designed for the proposal of progressive drug delivery systems and delivery of a wide scope of therapeutics. In this review, we commenced an outline of novel development in this area of research. In present study we also elaborate the functionalization i.e. covalent and non-covalent functionalization of graphene oxide. We shortly illustrate recent procedures for the surface amendment of graphene-based nanocarriers, their biocompatibility, and toxicity, monitored by compacted of the most engaging cases established for the distribution of anti-cancer drugs and genes. Lastly, the review is concise, by a short consequence of upcoming forecasts and tasks in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Google Scholar 

  2. Brumfiel G (2009) Graphene gets ready for the big time. Nature 458(7237):390–401

    Article  CAS  Google Scholar 

  3. Sykes E (2009) Graphene goes undercover. Nature Chem 1:175–176

    Google Scholar 

  4. Li D, Kaner RB (2008) Materials science, graphene-based materials. Science 320(5880):1170–1171

    Article  CAS  Google Scholar 

  5. Gupta V, Sharma N, Singh U, Arif M, Singh A (2017) Higher oxidation level in graphene oxide. Optik (Stuttg) 143:115–124

    Article  CAS  Google Scholar 

  6. Boehm HP, Clauss A, Fischer G, Hofmann U (1962) Surface properties of extremely thin graphite lamellae. In: Proceedings of the fifth conference on carbon, pp 73–80

    Google Scholar 

  7. Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds. Pure Appl Chem 66(9):1893–1901

    Google Scholar 

  8. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  9. Lee C, Wei X, Kysar J, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  10. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photo 4:611–622

    Article  CAS  Google Scholar 

  11. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  12. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon N Y 39:507–514

    Article  CAS  Google Scholar 

  13. Stoller M, Park S, Yanwu Z, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:6–10

    Article  CAS  Google Scholar 

  14. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  CAS  Google Scholar 

  15. Zhang L, Xia J, Zhao Q, Liu L (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Article  CAS  Google Scholar 

  16. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery and cancer therapy. Mater Today 14:316–323

    Article  CAS  Google Scholar 

  17. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  18. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Google Scholar 

  19. Eizenberg M, Blakely JM (1979) Carbon monolayer phase condensation on Ni (111). Surf Sci 82:228

    Article  CAS  Google Scholar 

  20. Wintterlin J, Bocquet ML (2009) Graphene on metal surfaces. Surf Sci 603:1841–1852

    Article  CAS  Google Scholar 

  21. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Article  CAS  Google Scholar 

  22. Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) Scanning tunneling microscopy i: general principles and applications. Surf Sci 264:261

    Article  CAS  Google Scholar 

  23. Yang M, Hou Y, Kotov NA (2012) Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 7:430–447

    Article  CAS  Google Scholar 

  24. Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6:64993–65011

    Article  CAS  Google Scholar 

  25. Chen K, Song S, Liu F, Xue D (2015) Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev 44:6230–6257

    Article  CAS  Google Scholar 

  26. Guo S, Dong S (2011) Graphene nano sheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672

    Article  CAS  Google Scholar 

  27. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    Article  CAS  Google Scholar 

  28. Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9):2345–2351

    Article  CAS  Google Scholar 

  29. Lee DY, Khatun Z, Lee JH, Lee YK, In I (2011) Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules 12(2):336–341

    Article  CAS  Google Scholar 

  30. Wang Y, Zhang P, Fang LC, Zhan L, Fang LY, Huang CZ (2012) Graphene–inorganic nanocomposites. RSC Adv 2(6):2322–2328

    Google Scholar 

  31. Depan D, Girase B, Shah JS, Misra RDK (2011) Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure. Acta Biomater 7(9):3432–3445

    Article  CAS  Google Scholar 

  32. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700

    Article  CAS  Google Scholar 

  33. Shen J, Yan B, Shi M, Ma H, Li N, Ye MJ (2011) One-step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. Colloid Interf Sci 356(2):543−549

    Google Scholar 

  34. Shen J, Shi M, Yan B, Ma H, Li N, Hu Y, Ye M (2010) Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf B 81(2):434–438

    Article  CAS  Google Scholar 

  35. Tang L, Wang Y, Liu Y, Li J (2011) DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano 5(5):3817–3822

    Article  CAS  Google Scholar 

  36. Liao KH, Lin YS, Macosko CW, Haynes CL (2011a) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interf 3(7):2607–2615

    Article  CAS  Google Scholar 

  37. Murthy N, Chang I, Stayton P, Hoffman A (2001) pH-sensitive hemolysis by random copolymers of alkyl acrylates and acrylic acid. Macromol Symp 172(1):49–56

    Article  CAS  Google Scholar 

  38. Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez CH, Vinh D, Dai HJ (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Am Chem Soc 133(17):6825–6831

    Article  CAS  Google Scholar 

  39. Pan Y, Bao H, Sahoo NG, Wu T, Li L (2011) Water-soluble poly (N-isopropylacrylamide)–graphene sheets synthesized via click chemistry for drug delivery. Adv Funct Mater 21(14):2754–2763

    Article  CAS  Google Scholar 

  40. Lavik EB, Kuppermann BD, Humayun MS (2012) Drug delivery. In: Retina, 5th edn. Elsevier Inc., pp 1

    Google Scholar 

  41. Friedmann T (1992) A brief history of gene therapy. Nat Genet 2:93–98

    Article  CAS  Google Scholar 

  42. Frid A, Hirsch L, Gaspar R (2010) New injection recommendations for patients with diabetes. Diabetes Metab 36(2):3–18

    Article  Google Scholar 

  43. Kim F, Cote LJ, Huang J (2010) Graphene oxide: surface activity and two-dimensional assembly. Adv Mater 22:1954–1958

    Article  CAS  Google Scholar 

  44. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415

    Article  CAS  Google Scholar 

  45. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1416

    Article  CAS  Google Scholar 

  46. Park S, Rodney SR (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  47. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3:538–542

    Article  CAS  Google Scholar 

  48. Khani M, Mehdipour E, Faghani A, Guday G, Donskyi IS, Unger WES, Adeli M (2016) Preparation of graphene oxide by cyanuric chloride as an effective and non-corrosive oxidizing agent. RSC Adv 6:115055–115057

    Article  CAS  Google Scholar 

  49. Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer (Guildf) 54:5087–5103

    Article  CAS  Google Scholar 

  50. Liu Z, Robinson JT, Sun X, Dai H (2008a) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  51. Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7:460–464

    Article  CAS  Google Scholar 

  52. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 47:5235–5237

    Article  CAS  Google Scholar 

  53. Zhang S, Yang K, Feng L, Liu Z (2011a) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon N Y 49:4040–4049

    Article  CAS  Google Scholar 

  54. Kurapati R, Raichur AM (2012) Graphene oxide based multilayer capsules with unique permeability properties: facile encapsulation of multiple drugs. Chem Commun 48:6013–6015

    Article  CAS  Google Scholar 

  55. Depan D, Shah J, Misra RDK (2011a) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C31:1305–1312

    Article  CAS  Google Scholar 

  56. Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T (2017) Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater Sci Eng C 77:1363–1375

    Article  CAS  Google Scholar 

  57. Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21:3448–3454

    Article  CAS  Google Scholar 

  58. Shen H, Liu M, He H, Zhang L, Huang J, Chong Y (2012a) PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mater Inter 4:6317–6323

    Article  CAS  Google Scholar 

  59. Liu J, Guo S, Han L, Wang T, Hong W, Liu Y (2012) Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. J Matter Chem 22:20634–20640

    Article  CAS  Google Scholar 

  60. Xie M, Zhang F, Liu L, Zhang Y, Li Y, Li H (2018) Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl Surf Sci 440:853–860

    Article  CAS  Google Scholar 

  61. Harris JM, Chess RB (2003) Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  CAS  Google Scholar 

  62. Stewart RH, Novak S (1978) Introduction of the ocusert ocular system to an ophthalmic practice. Ann Ophthalmol 10:325–330

    CAS  Google Scholar 

  63. Langer RS, Peppas NA (1981) Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2:201–214

    Article  CAS  Google Scholar 

  64. Langer R (1983) Implantable controlled release systems. Pharmacol Ther 21:35–51

    Article  CAS  Google Scholar 

  65. Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    Article  CAS  Google Scholar 

  66. Philip AK, Pathak K (2006) Osmotic flow through asymmetric membrane: a means for controlled delivery of drugs with varying solubility. AAPS PharmSciTech 7:56

    Article  Google Scholar 

  67. Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene- family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Article  CAS  Google Scholar 

  68. Chang YL, Yang ST, Liu JH, Dong E, Wang YW, Cao AN (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–210

    Article  CAS  Google Scholar 

  69. Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4:6587–6598

    Article  CAS  Google Scholar 

  70. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  Google Scholar 

  71. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  72. Shen J, Shi M, Li N, Yan B, Ma H, Hu Y (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349

    Article  CAS  Google Scholar 

  73. Li XY, Huang XL, Liu DP, Wang X, Song SY, Zhou L (2011) Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C 115:21567–21573

    Article  CAS  Google Scholar 

  74. Liu HW, Hu SH, Chen YW, Chen SY (2012) Characterization and drug release behavior of highly responsive chip-like electrically modulated reduced graphene oxide–poly (vinyl alcohol) membranes. J Mater Chem 22:17311–17320

    Article  CAS  Google Scholar 

  75. Misra SK, Kondaiah P, Bhattacharya S, Rao CNR (2012) Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins. Small 8:131–143

    Article  CAS  Google Scholar 

  76. Hondroulis E, Zhang ZQ, Chen CY, Li CZ (2011) Impedance based nanotoxicity assessment of graphene nanomaterials at the cellular and tissue level. Anal Lett 45:272–282

    Article  CAS  Google Scholar 

  77. Liao KH, Lin YS, Macosko CW, Haynes CL (2011b) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interf 3:2607–2615

    Article  CAS  Google Scholar 

  78. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6:1–8

    Google Scholar 

  79. Zhang XY, Yin JL, Peng C, Hu WQ, Zhu ZY, Li WX (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49:986–995

    Article  CAS  Google Scholar 

  80. Hu W, Peng C, Luo W, Lv M, Li X, Li D (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  Google Scholar 

  81. Liu KP, Zhang JJ, Cheng FF, Zheng TT, Wang CM, Zhu JJ (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034–12040

    Article  CAS  Google Scholar 

  82. Duch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11:5201–5207

    Article  CAS  Google Scholar 

  83. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Article  CAS  Google Scholar 

  84. Liu Z, Robinson JT, Sun XM, Dai HJ (2008b) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10887

    Article  CAS  Google Scholar 

  85. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S (2008a) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  86. Yang K, Zhang SA, Zhang GX, Sun XM, Lee ST, Liu ZA (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  CAS  Google Scholar 

  87. Yang K, Wan JM, Zhang SA, Zhang YJ, Lee ST, Liu ZA (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522

    Article  CAS  Google Scholar 

  88. Ali Boucetta H, Bitounis D, Raveendran-Nair R, Servant A, Van den Bossche J, Kostarelos K (2013) Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Healthc Mater 2:433–441

    Article  CAS  Google Scholar 

  89. Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Gracio JJA, Dash D (2012) Amine- modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6:2731–2740

    Article  CAS  Google Scholar 

  90. Zhang SA, Yang K, Feng LZ, Liu Z (2011b) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49:4040–4049

    Article  CAS  Google Scholar 

  91. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700

    Article  CAS  Google Scholar 

  92. Hollanda LM, Lobo AO, Lancellotti M, Berni E, Corat EJ, Zanin H (2014) Graphene and carbon nanotube nanocomposite for gene transfection. Mater Sci Eng C 39:288–298

    Article  CAS  Google Scholar 

  93. Ricci R, Leite NCS, da-Silva NS, Pacheco-Soares C, Canevari RA, Marciano FR, Webster TJ, Lobo AO (2017) Graphene oxide nanoribbons as nano- material for bone regeneration: effects on cytotoxicity, gene expression and bactericidal effect. Mater Sci Eng C 78:341–348

    Google Scholar 

  94. Kim H, Namgung R, Singha K, Oh IK, Kim WJ (2011) Graphene oxide–polyethyle-nimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567

    Article  CAS  Google Scholar 

  95. Xu C, Yang D, Mei L, Lu B, Chen L, Li Q, Zhu H, Wang T (2013) Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector. ACS Appl Mater Interf 5:2715–2724

    Article  CAS  Google Scholar 

  96. Li K, Feng L, Shen J, Zhang Q, Liu Z, Lee ST, Liu J (2014) Patterned substrates of nano-graphene oxide mediating highly localized and efficient gene delivery.ACS Appl. Mater Interf 6:5900–5907

    Article  CAS  Google Scholar 

  97. Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VTS, Nikkhah M, Shin SR, Krafft D, Dokmeci MR, Shum-Tim D, Khademhosseini A (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062

    Article  CAS  Google Scholar 

  98. Hung AH, Holbrook RJ, Rotz MW, Glasscock CJ, Mansukhani ND, MacRenaris KW, Manus LM, Duch MC, Dam KT, Hersam MC, Meade TJ (2014) Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation. ACS Nano 8:10168–10177

    Article  CAS  Google Scholar 

  99. Shen H, Liu M, He H, Zhang L, Huang J, Chong Y (2012b) PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mater Inter 4:6317–6323

    Article  CAS  Google Scholar 

  100. Wang Y, Li Z, Weber TJ, Hu D, Lin CT, Li J (2013) In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem 85:6775–6782

    Article  CAS  Google Scholar 

  101. Yang X, Niu G, Cao X, Wen Y, Xiang R, Duan H (2012) The preparation of functionalized graphene oxide for targeted intracellular delivery of siRNA. J Mater Chem 22:6649–6654

    Article  CAS  Google Scholar 

  102. Yin D, Li Y, Lin H, Guo B, Du Y, Li X (2013) Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 24:105102

    Article  CAS  Google Scholar 

  103. Huang YP, Hung CM, Hsu YC, Zhong CY, Wang WR, Chang CC (2016) Suppression of breast cancer cell migration by small interfering RNA delivered by polyethylenimine-functionalized graphene oxide. Nanoscale Res Lett 11:247

    Article  CAS  Google Scholar 

  104. Ryoo SR, Lee J, Yeo J, Na HK, Kim YK, Jang H (2013) Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). ACS Nano 7:5882–5891

    Article  CAS  Google Scholar 

  105. Tao Y, Ju E, Ren J, Qu X (2014) Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials 35:9963–9971

    Article  CAS  Google Scholar 

  106. Tegou E, Magana M, Katsogridaki AE, Ioannidis A, Raptis V, Jordan S, Chatzipanagiotou S, Chatzandroulis S, Ornelas C, Tegos GP (2016) Terms of endearment: bacteria meet graphene nanosurfaces. Biomaterials 89:38–55

    Google Scholar 

  107. Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, Paunovic VG, Dramicanin MD, Markovic ZM, Trajkovic VS (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35:4428–4435

    Article  CAS  Google Scholar 

  108. Fathalipour S, Pourbeyram S, Sharafian A, Tanomand A, Azam P (2017) Biomolecule- assisted synthesis of Ag/reduced graphene oxide nanocomposite with excellent electrocatalytic and antibacterial performance. Mater Sci Eng C 75:742–751

    Article  CAS  Google Scholar 

  109. Shen J, Li T, Shi M, Li N, Ye M (2012) Polyelectrolyte-assisted one-step hydrothermal synthesis of Ag-reduced graphene oxide composite and its antibacterial properties. Mater Sci Eng C 32:2042–2047

    Article  CAS  Google Scholar 

  110. Govindaraju S, Samal M, Yun K (2016) Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation. Mater Sci Eng C 69:366–372

    Article  CAS  Google Scholar 

  111. Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R (2013) Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interf 5:3867–3874

    Article  CAS  Google Scholar 

  112. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  Google Scholar 

  113. Lin D, Qin T, Wang Y, Sun X, Chen L (2014) Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Appl Mater Interf 6:1320–1329

    Article  CAS  Google Scholar 

  114. Wang A, Cao Y, Jiang X, Zhang JH, Liu Y, Liu H, Wang (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interf 6:2791–2798

    Google Scholar 

  115. Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng. 2:1559–1565

    Article  CAS  Google Scholar 

  116. He J, Zhu X, Qi Z, Wang C, Mao X, Zhu C, He Z, Li M, Tang Z (2015) Killing dental pathogens using antibacterial graphene oxide. ACS Appl Mater Interf 7:5605–5611

    Article  CAS  Google Scholar 

  117. Xie C, Lu X, Han L, Xu J, Wang Z, Jiang L, Wang K, Zhang H, Ren F, Tang Y (2016) Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl Mater Interf 8:1707–1717

    Article  CAS  Google Scholar 

  118. Sametband M, Kalt I, Gedanken A, Sarid R (2014) Herpes simplex virus type-1 at-tachment inhibition by functionalized graphene oxide. ACS Appl Mater Interf 6:1228–1235

    Article  CAS  Google Scholar 

  119. Corrie PG (2007) Cytotoxic chemotherapy: clinical aspects. Medicine 36:24–28

    Google Scholar 

  120. Liu Z, Robinson JT, Sun X, Dai H (2008c) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10887

    Article  CAS  Google Scholar 

  121. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S (2008b) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  122. Kakran M, Sahoo N, Bao H, Pan Y, Li L (2012) Functionalized graphene oxide as nanocarrier for loading and adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology 23:355101

    Article  CAS  Google Scholar 

  123. Wu J, Wang YS, Yang XY, Liu YY, Yang JR, Yang R (2011) Graphene oxide used as a carrier for delivery of ellagic acid. Curr Med Chem 18:4503–4512

    Article  Google Scholar 

  124. Xu Z, Wang S, Li Y, Wang M, Shi P, Huang X (2014) Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. Appl Mater Interf 6:17268–17276

    Article  CAS  Google Scholar 

  125. Lu YJ, Yang HW, Hung SC, Huang CY, Li SM, Ma CCM (2012) Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. Int J Nanomed 7:1737

    CAS  Google Scholar 

  126. Tian L, Pei X, Zeng Y, He R, Li Z, Wang J (2014) Functionalized nanoscale graphene oxide for high efficient drug delivery of cisplatin. J Nanopart Res 16:2709

    Article  CAS  Google Scholar 

  127. Yang X, Zhang X, Liu Z (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    Article  CAS  Google Scholar 

  128. Depan D, Shah J, Misra RDK (2011b) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C 31:1305–1312

    Article  CAS  Google Scholar 

  129. Hu HQ, Yu JH, Li YY (2012) Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J Biomed Mater Res A 100A:141–148

    Article  CAS  Google Scholar 

  130. Wang CS, Li JY, Amatore C (2011) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed 50:11644–11648

    Article  CAS  Google Scholar 

  131. Yang XY, Wang YS, Huang X (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21:3448–3454

    Article  CAS  Google Scholar 

  132. Zhang W, Guo ZY, Huang DQ (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32:8555–8561

    Article  CAS  Google Scholar 

  133. Zhang LM, Xia JG, Zhao QH (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Article  CAS  Google Scholar 

  134. Jager M, Schubert S, Ochrimenko S (2012) Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem Soc Rev 41:4755–4767

    Article  CAS  Google Scholar 

  135. Zhang LM, Lu ZX, Zhao QH (2011) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-Grafted graphene oxide. Small 7:460–464

    Article  CAS  Google Scholar 

  136. Bao H, Pan Y, Ping Y (2011) Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7:1569–1578

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SM, SK, and DG would like to thanks Amity University, Haryana for supporting this work. SM and DG would like to acknowledge the support provided under the DST-FIST Grant No.SR/FST/PS-I/2019/68 of Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasree Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumder, S., Kumari, S., Ghosh, D. (2021). Graphene Based Biopolymer Nanocomposite Applications in Drug Delivery. In: Sharma, B., Jain, P. (eds) Graphene Based Biopolymer Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-15-9180-8_16

Download citation

Publish with us

Policies and ethics