Skip to main content

Natural Rubber/Graphene Nanocomposites and Their Applications

  • Chapter
  • First Online:
Graphene Based Biopolymer Nanocomposites

Abstract

The current review focuses on giving a basic understanding of graphene structure, preparation methods, their role in fabricating and the  mechanical performance of elastomer and biopolymer composites. Since the physical properties and the performance of graphene reinforced elastomer or biopolymer composites predominantly depend on the rate of dispersion of graphene in the matrix, the physical and chemical interaction of polymer chains with the graphene and the orientation of the graphene within the matrix, here, a thorough study of these topics is carried out. Moreover, the current challenges and future perspectives involving in graphene biopolymer/elastomer composites are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mc Naught AD, Wilkinson A (1997) Volume of activation, ΔV. In: IUPAC compendium of chemical terminology. IUPAC, Research Triagle Park, NC

    Google Scholar 

  2. Hosler D (1999) Prehistoric Polymers: rubber processing in ancient mesoamerica. Science (80)284:1988–1991. https://doi.org/10.1126/science.284.5422.1988

  3. Heinrich G, Basak GC (2011) Advanced rubber composites. Springer, Berlin

    Google Scholar 

  4. Ceresana Research (2011) Protecting plastics and rubber: Ceresana analyzes the stabilizer market. Pigment Resin Technol 40:prt.2011.12940eaa.022. https://doi.org/10.1108/prt.2011.12940eaa.022

  5. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  6. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer (Guildf)

    Google Scholar 

  7. Heinrich G, Klüppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Solid State Mater Sci. https://doi.org/10.1016/S1359-0286(02)00030-X

    Article  Google Scholar 

  8. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Reports 28:1–63. https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  9. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  10. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  CAS  Google Scholar 

  11. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205. https://doi.org/10.1021/ma060733p

    Article  CAS  Google Scholar 

  12. Koerner H, Price G, Pearce NA et al (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3(2):115–120

    Article  CAS  Google Scholar 

  13. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polym (Guildf) 48:4907–4920. https://doi.org/10.1016/j.polymer.2007.06.046

    Article  CAS  Google Scholar 

  14. Yaragalla S, Mishra RK, Thomas S, Kalarikkal N, Maria HJ (2018) Carbon-based nanofillers and their rubber nanocomposites 1st edition carbon nano-objects. Elsevier, p 402

    Google Scholar 

  15. Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687

    Article  CAS  Google Scholar 

  16. Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63(11):1647–1654. https://doi.org/10.1016/S0266-3538(03)00066-6

    Article  CAS  Google Scholar 

  17. Donnet JB (2003) Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol 63(8):1085–1088. https://doi.org/10.1016/S0266-3538(03)00028-9

    Article  CAS  Google Scholar 

  18. Boonstra BB (1979) Role of particulate fillers in elastomer reinforcement: a review. Polymer 20(6):691–704 (Guildf). https://doi.org/10.1016/0032-3861(79)90243-X

  19. Edwards DC (1990) Polymer-filler interactions in rubber reinforcement. J Mater Sci 25:4175–4185. https://doi.org/10.1007/BF00581070

    Article  CAS  Google Scholar 

  20. Joly S, Garnaud G, Ollitrault R et al (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14(10):4202–4208. https://doi.org/10.1021/cm020093e

    Article  CAS  Google Scholar 

  21. Ponnamma D, Sadasivuni KK, Grohens Y et al (2014) Carbon nanotube based elastomer composites—an approach towards multifunctional materials. J Mater Chem C 2:8446–8485. https://doi.org/10.1039/C4TC01037J

    Article  CAS  Google Scholar 

  22. Araby S, Meng Q, Zhang L et al (2015) Elastomeric composites based on carbon nanomaterials. Nanotechnology 26:112001. https://doi.org/10.1088/0957-4484/26/11/112001

    Article  CAS  Google Scholar 

  23. Basu D, Das A, Stöckelhuber KW et al (2014) Advances in layered double hydroxide (LDH)-based elastomer composites. Prog Polym Sci 39(3):594–626

    Article  CAS  Google Scholar 

  24. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  25. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  CAS  Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200. https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  27. Yaragalla SAPM, Kalarikkal N, Thomas S (2015) Chemistry associated with natural rubber–graphene nanocomposites and its effect on physical and structural properties. Ind Crops Prod 74:792–802. https://doi.org/10.1016/j.indcrop.2015.05.079

  28. Yaragalla S, Sarath Chandran C, Kalarikkal N et al (2015) Effect of reinforcement on the barrier and dielectric properties of epoxidized natural rubber-graphene nanocomposites. Polym Eng Sci 55. https://doi.org/10.1002/pen.24131

  29. Yaragalla S, Sindam B, Abraham J et al (2015) Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22:137. https://doi.org/10.1007/s10965-015-0776-5

    Article  CAS  Google Scholar 

  30. Yaragalla S, Mishra RK, Thomas S, Kalarikkal N, Maria HJ (2019) Carbon-based nanofillers and their rubber nanocomposites, fundamental and applications, 1st edn. Elsevier, p 496

    Google Scholar 

  31. Yaragalla S, Hanum R (2013) Electrical properties of graphene filled natural rubber composites. Adv Mater 812:263–266

    Google Scholar 

  32. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670. https://doi.org/10.1016/j.progpolymsci.2010.11.003

    Article  CAS  Google Scholar 

  33. Terrones M, Martín O, González M et al (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 23(44):5302–5310. https://doi.org/10.1002/adma.201102036

    Article  CAS  Google Scholar 

  34. Cai D, Song M (2010) Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem 20:7906. https://doi.org/10.1039/c0jm00530d

    Article  CAS  Google Scholar 

  35. Kuilla T, Bhadra S, Yao D et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  CAS  Google Scholar 

  36. Young RJ, Kinloch IA, Nicolais L (2011) Graphene composites. Wiley encyclopedia of composites. Wiley Inc.

    Google Scholar 

  37. Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science (80)306:666–669. https://doi.org/10.1126/science.1102896

  38. Gong L, Kinloch IA, Young RJ et al (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697. https://doi.org/10.1002/adma.200904264

    Article  CAS  Google Scholar 

  39. Young RJ, Gong L, Kinloch IA et al (2011) Strain mapping in a graphene monolayer nanocomposite. ACS Nano 5(4):3079–3084. https://doi.org/10.1021/nn2002079

    Article  CAS  Google Scholar 

  40. Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9(4):1593–1597. https://doi.org/10.1021/nl803798y

    Article  CAS  Google Scholar 

  41. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564. https://doi.org/10.1021/la801744a

    Article  CAS  Google Scholar 

  42. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  43. Blake P, Brimicombe PD, Nair RR et al (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708. https://doi.org/10.1021/nl080649i

    Article  Google Scholar 

  44. Bourlinos AB, Georgakilas V, Zboril R et al (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845. https://doi.org/10.1002/smll.200900242

    Article  CAS  Google Scholar 

  45. Lotya M, Hernandez Y, King PJ et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620. https://doi.org/10.1021/ja807449u

    Article  CAS  Google Scholar 

  46. Niu L, Li M, Tao X et al (2013) Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale 5(16):7202–7208. https://doi.org/10.1039/c3nr02173d

    Article  CAS  Google Scholar 

  47. Xiang J, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon NY 49:773–778. https://doi.org/10.1016/j.carbon.2010.10.003

    Article  CAS  Google Scholar 

  48. McAllister MJ, Li JL, Adamson DH et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404. https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  49. Yaragalla S, Anilkumar G, Vineeshkumar TV et al (2015) Preparation of epoxy graphene and its structural and optical properties. Adv Mater Lett 6:848–852. https://doi.org/10.5185/amlett.2015.5914

    Article  CAS  Google Scholar 

  50. Zhang H-B, Wang J-W, Yan Q et al (2011) Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21:5392. https://doi.org/10.1039/c1jm10099h

    Article  CAS  Google Scholar 

  51. Yu Q, Lian J, Siriponglert S et al (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103. https://doi.org/10.1063/1.2982585

    Article  CAS  Google Scholar 

  52. Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46:2329–2339. https://doi.org/10.1021/ar300203n

    Article  CAS  Google Scholar 

  53. Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924. https://doi.org/10.1021/nn201207c

    Article  CAS  Google Scholar 

  54. Li X, Magnuson CW, Venugopal A et al (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819. https://doi.org/10.1021/ja109793s

    Article  CAS  Google Scholar 

  55. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607. https://doi.org/10.1021/nn202625c

    Article  CAS  Google Scholar 

  56. Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80)324:1312–1314. https://doi.org/10.1126/science.1171245

  57. Herron CR, Coleman KS, Edwards RS, Mendis BG (2011) Simple and scalable route for the ‘bottom-up’ synthesis of few-layer graphene platelets and thin films. J Mater Chem 21:3378. https://doi.org/10.1039/c0jm03437a

    Article  CAS  Google Scholar 

  58. Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51. https://doi.org/10.1039/C2NR32629A

  59. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  60. Červenka J, Katsnelson MI, Flipse CFJ (2009) Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat Phys 5:840–844. https://doi.org/10.1038/nphys1399

    Article  CAS  Google Scholar 

  61. Yazyev OV, Louie SG (2010a) Electronic transport in polycrystalline graphene. Nat Mater 9:806–809. https://doi.org/10.1038/nmat2830

    Article  CAS  Google Scholar 

  62. Yazyev OV, Louie SG (2010b) Topological defects in graphene: Dislocations and grain boundaries. Phys Rev B 81:195420. https://doi.org/10.1103/PhysRevB.81.195420

    Article  CAS  Google Scholar 

  63. Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63. https://doi.org/10.1038/nature05545

    Article  CAS  Google Scholar 

  64. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29. https://doi.org/10.1038/nnano.2008.329

    Article  CAS  Google Scholar 

  65. Xu K, Cao P, Heath JR (2009) Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett 9(12):4446–4451. https://doi.org/10.1021/nl902729p

    Article  CAS  Google Scholar 

  66. Decker R, Wang Y, Brar VW et al (2011) Local electronic properties of graphene on a bn substrate via scanning tunneling microscopy. Nano Lett 11:2291–2295. https://doi.org/10.1021/nl2005115

    Article  CAS  Google Scholar 

  67. Bao W, Miao F, Chen Z et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566. https://doi.org/10.1038/nnano.2009.191

    Article  CAS  Google Scholar 

  68. Xu B, Yue S, Sui Z et al (2011) What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ Sci 4:2826. https://doi.org/10.1039/c1ee01198g

    Article  CAS  Google Scholar 

  69. Khanra P, Kuila T, Bae SH et al (2012) Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. J Mater Chem 22(46):24403–24410. https://doi.org/10.1039/c2jm34838a

    Article  CAS  Google Scholar 

  70. Graf D, Molitor F, Ensslin K et al (2007) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7(2):238–242. https://doi.org/10.1021/nl061702a

    Article  CAS  Google Scholar 

  71. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  72. Young RJ, Kinloch IA (2013) Graphene and graphene-based nanocomposites. In: Nanoscience: volume 1: nanostructures through chemistry, The royal society of chemistry, pp 145–179

    Google Scholar 

  73. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  74. Eckmann A, Felten A, Verzhbitskiy I et al (2013) Raman study on defective graphene: effect of the excitation energy, type, and amount of defects. Phys Rev B 88:035426. https://doi.org/10.1103/PhysRevB.88.035426

    Article  CAS  Google Scholar 

  75. Kim H, Miura Y, Macosko CW (2010a) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450. https://doi.org/10.1021/cm100477v

    Article  CAS  Google Scholar 

  76. Araby S, Meng Q, Zhang L et al (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polym (Guildf) 55:201–210. https://doi.org/10.1016/j.polymer.2013.11.032

    Article  CAS  Google Scholar 

  77. Sadasivuni KK, Saiter A, Gautier N et al (2013) Effect of molecular interactions on the performance of poly(isobutylene-co- isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291(7):1729–1740. https://doi.org/10.1007/s00396-013-2908-y

    Article  CAS  Google Scholar 

  78. Chen B, Ma N, Bai X et al (2012) Effects of graphene oxide on surface energy, mechanical, damping and thermal properties of ethylene-propylene-diene rubber/petroleum resin blends. RSC Adv 2(11):4683–4689. https://doi.org/10.1039/c2ra01212j

    Article  CAS  Google Scholar 

  79. Wu S, Tang Z, Guo B et al (2013) Effects of interfacial interaction on chain dynamics of rubber/graphene oxide hybrids: a dielectric relaxation spectroscopy study. RSC Adv 3(34):14549–14559. https://doi.org/10.1039/c3ra41998c

    Article  CAS  Google Scholar 

  80. Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464. https://doi.org/10.1039/c2jm31293j

    Article  CAS  Google Scholar 

  81. Tang Z, Wu X, Guo B et al (2012) Preparation of butadiene-styrene-vinyl pyridine rubber-graphene oxide hybrids through co-coagulation process and in situ interface tailoring. J Mater Chem 22(15):7492–7501. https://doi.org/10.1039/c2jm00084a

    Article  CAS  Google Scholar 

  82. Dao TD, Lee H, Jeong HM (2014) Alumina-coated graphene nanosheet and its composite of acrylic rubber. J Colloid Interf Sci 416:38–43. https://doi.org/10.1016/j.jcis.2013.10.033

    Article  CAS  Google Scholar 

  83. Wei J, Qiu J (2014) Allyl-Functionalization enhanced thermally stable graphene/fluoroelastomer nanocomposites. Polym (Guildf) 55(16):3818–3824. https://doi.org/10.1016/j.polymer.2014.06.063

    Article  CAS  Google Scholar 

  84. Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F (2013) Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochim Acta 563:22–32. https://doi.org/10.1016/j.tca.2013.04.010

    Article  CAS  Google Scholar 

  85. Kim H, Miura Y, Macosko CW (2010b) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450. https://doi.org/10.1021/cm100477v

    Article  CAS  Google Scholar 

  86. Shioyama H (2000) The interactions of two chemical species in the interlayer spacing of graphite. Synth Met 114:1–15. https://doi.org/10.1016/S0379-6779(00)00222-8

    Article  CAS  Google Scholar 

  87. Potts JR, Shankar O, Du L, Ruoff RS (2012a) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055. https://doi.org/10.1021/ma300706k

    Article  CAS  Google Scholar 

  88. Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219. https://doi.org/10.1021/cm00048a006

    Article  CAS  Google Scholar 

  89. Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367. https://doi.org/10.1021/ma00122a053

    Article  CAS  Google Scholar 

  90. Prud’homme RK, Ozbas B, Aksay IA, Register RA, Adamson DH (2009) Functionalized graphene sheets having high carbon to oxygen ratios. WIPO 2009/134492 A2

    Google Scholar 

  91. Potts JR, Shankar O, Du L, Ruoff RS (2012b) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055. https://doi.org/10.1021/ma300706k

    Article  CAS  Google Scholar 

  92. Potts JR, Shankar O, Murali S et al (2013) Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol 74:166–172. https://doi.org/10.1016/j.compscitech.2012.11.008

    Article  CAS  Google Scholar 

  93. Dong B, Liu C, Zhang L, Wu Y (2015) Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites. RSC Adv 5:17140–17148. https://doi.org/10.1039/C4RA17051B

    Article  CAS  Google Scholar 

  94. Beckert F, Trenkle S, Thomann R, Mülhaupt R (2014) Mechanochemical route to functionalized graphene and carbon nanofillers for graphene/sbr nanocomposites. Macromol Mater Eng 299(12):1513–1520. https://doi.org/10.1002/mame.201400205

    Article  CAS  Google Scholar 

  95. Schopp S, Thomann R, Ratzsch KF et al (2014) Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending. Macromol Mater Eng 299(3):319–329. https://doi.org/10.1002/mame.201300127

    Article  CAS  Google Scholar 

  96. Zhan Y, Wu J, Xia H et al (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602. https://doi.org/10.1002/mame.201000358

    Article  CAS  Google Scholar 

  97. Xing W, Wu J, Huang G et al (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63:1674–1681. https://doi.org/10.1002/pi.4689

    Article  CAS  Google Scholar 

  98. Cho D, Lee S, Yang G et al (2005) Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol Mater Eng 290:179–187. https://doi.org/10.1002/mame.200400281

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srinivasarao Yaragalla or Sabu Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhavitha, K.B., Yaragalla, S., China Satyanarayana, C.H., Kalarikkal, N., Thomas, S. (2021). Natural Rubber/Graphene Nanocomposites and Their Applications. In: Sharma, B., Jain, P. (eds) Graphene Based Biopolymer Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-15-9180-8_11

Download citation

Publish with us

Policies and ethics