Skip to main content

Cotton Based Clothing

Part of the Textile Science and Clothing Technology book series (TSCT)

Abstract

Cellulose is a natural polymer and is being used in various textile applications due to its sustainable nature (as compared to synthetic polymers). Cotton is also a cellulose-based polymer, and almost 70% of cotton is converted into apparel and more than third into home textiles and remainder into industrial products. The share of cotton in retail apparel and home furnishings market has grown from a historic low of 34% in the early 1970s to more than 60% today. Cotton is being used for almost every type of apparel, from jackets and coats to foundation garments. Its apparel usage is mostly is for men and boys’ clothing. 70% of cotton-based products constitute shirts, pants, and jeans. For home textiles, cotton-based products range from bedspreads to window shades. Cotton based products are dominative in the apparel industry due to its low price, comfort, and mechanical properties. As clothing comfort is the most crucial attribute of any textile material, it absorbs moisture and is breathable, which makes it’s a perfect material for apparel. As cotton is a natural polymer, so it is less toxic and hypoallergenic and is used in undergarments to decrease the chances of infections and other health risks. Market trends are suggesting. Organic clothing will gain more popularity in the future.

Keywords

  • Hypoallergenic
  • Air permeability
  • Thermal comfort
  • Softness

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-9169-3_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-9169-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3

(Source Pakistan trade)

Fig. 15.4
Fig. 15.5

References

  1. Riello, G. (2013). Cotton: The fabric that made the modern world. Cambridge University Press.

    Google Scholar 

  2. Campbell, B. T., Hinze, L., & Singh, B. (2010). Cotton production, processing and uses of cotton raw material. Industrial crops and uses (pp. 259–276). Oxfordshire, UK: CAB International.

    Google Scholar 

  3. Jabbar, M., & Shaker, K. (2016). Textile raw materials. Physical Sciences Reviews, 1.

    Google Scholar 

  4. Javed, A., & Atif, R. M. (2019). Global value chain: An analysis of Pakistan’s textile sector. Global Business Review, 0, 0972150918822109. https://doi.org/10.1177/0972150918822109.

  5. Frederick, S., Daly, J., & Center, D. G. V. C. (2019). Pakistan in the apparel global value chain.

    Google Scholar 

  6. Bullock, J. B., & Welch, C. M. (1966). Weathering durability of cotton fabrics treated with APO-THPC flame retardant. Textile Research Journal, 36, 441–451. https://doi.org/10.1177/004051756603600507.

    CAS  CrossRef  Google Scholar 

  7. Murugesh Babu, K., Selvadass, M., & Somashekar, R. (2013). Characterization of the conventional and organic cotton fibres. The Journal of the Textile Institute, 104, 1101–1112. https://doi.org/10.1080/00405000.2013.774948.

  8. Harlin, A., Jussila, K., & Ilen, E. (2020). Sports textiles and comfort aspects. In R. Paul (Ed.), High performance technical textiles (pp. 37–67). Wiley. https://doi.org/10.1002/9781119325062.ch3.

  9. Hua, W., Amjad, F., & Hafeezullah, M. (2020). Influence of cotton fiber properties on the microstructural characteristics of mercerized fibers by regression analysis. Wood and Fiber Science, 52, 13–27.

    CrossRef  Google Scholar 

  10. Memon, H., Khatri, A., Ali, N., & Memon, S. (2016). Dyeing recipe optimization for eco-friendly dyeing and mechanical property analysis of eco-friendly dyed cotton fabric: Better fixation, strength, and color yield by biodegradable salts. Journal of Natural Fibers, 13, 749–758. https://doi.org/10.1080/15440478.2015.1137527.

    CAS  CrossRef  Google Scholar 

  11. Laing, R. M., & Sleivert, G. G. (2002). Clothing, textiles, and human performance. Textile Progress, 32, 1–122. https://doi.org/10.1080/00405160208688955.

    CrossRef  Google Scholar 

  12. Worldwide textile exporter 2018. Statista.

    Google Scholar 

  13. Textile industry of Pakistan—An analysis. R. Magazine (2015).

    Google Scholar 

  14. United States International Trade Commission. (2016). USA: Interactive Tariff and Trade DataWeb.

    Google Scholar 

  15. Kadolph, S. J., & Marcketti, S. B. (2014). Textiles.

    Google Scholar 

  16. Kamalha, E., Zeng, Y., Mwasiagi, J. I., & Kyatuheire, S. (2013). The comfort dimension: A review of perception in clothing. Journal of Sensory Studies, 28, 423–444. https://doi.org/10.1111/joss.12070.

    CrossRef  Google Scholar 

  17. Abro, Z. A., Yi-Fan, Z., Nan-Liang, C., Cheng-Yu, H., Lakho, R. A., & Halepoto, H. (2019). A novel flex sensor-based flexible smart garment for monitoring body postures. Journal of Industrial Textiles, 49, 262–274. https://doi.org/10.1177/1528083719832854.

    CrossRef  Google Scholar 

  18. Asanovic, K. A., Cerovic, D. D., Mihailovic, T. V., Kostic, M. M., & Reljic, M. (2015). Quality of clothing fabrics in terms of their comfort properties. Indian Journal of Fibre & Textile Research, 40, 363–372.

    CAS  Google Scholar 

  19. Wong, A. S. W., Li, Y., & Yeung, P. K. W. (2004). Predicting clothing sensory comfort with artificial intelligence hybrid models. Textile Research Journal, 74, 13–19. https://doi.org/10.1177/004051750407400103.

    CAS  CrossRef  Google Scholar 

  20. Naveed, T., Hussain, A., & Zhong, Y. (2017). Reducing fabric wastage through image projected virtual marker (IPVM). Textile Research Journal, 88, 1571–1580. https://doi.org/10.1177/0040517517703605.

    CAS  CrossRef  Google Scholar 

  21. Yu, Q., Weng, P., Han, L., Yin, X., Chen, Z., Hu, X., et al. (2019). Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose, 26, 7523–7535. https://doi.org/10.1007/s10570-019-02592-w.

    CAS  CrossRef  Google Scholar 

  22. Prakash, C., Ramakrishnan, G., & Koushik, C. V. (2013). A study of the thermal properties of bamboo knitted fabrics. Journal of Thermal Analysis and Calorimetry, 111, 101–105. https://doi.org/10.1007/s10973-011-2166-5.

    CAS  CrossRef  Google Scholar 

  23. Karthikeyan, G., Nalakilli, G., Shanmugasundaram, O. L., & Prakash, C. (2017). Moisture management properties of bamboo viscose/tencel single jersey knitted fabrics. Journal of Natural Fibers, 14, 143–152. https://doi.org/10.1080/15440478.2016.1187700.

    CAS  CrossRef  Google Scholar 

  24. Das, S., & Kothari, V. (2012). Moisture vapour transmission behaviour of cotton fabrics. Indian Journal of Fibre and Textile Research, 37, 151–156.

    CAS  Google Scholar 

  25. Oğulata, R. T., & Mavruz, S. (2010). Investigation of porosity and air permeability values of plain knitted fabrics.

    Google Scholar 

  26. Venkatraman, P. (2018). Fabric properties and their characteristics. Materials and technology for sportswear and performance apparel (p. 53).

    Google Scholar 

  27. Liu, Y., Thibodeaux, D., & Rodgers, J. (2014). Preliminary study of linear density, tenacity, and crystallinity of cotton fibers. Fibers, 2, 211–220.

    CAS  CrossRef  Google Scholar 

  28. Li, Z., Cheng, J., Yang, X., Liu, H., Xu, X., Ma, L., et al. (2020). Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. International Journal of Biological Macromolecules, 150, 1–8. https://doi.org/10.1016/j.ijbiomac.2020.01.259.

    CAS  CrossRef  Google Scholar 

  29. Krifa, M., & Stevens, S. S. (2016). Cotton utilization in conventional and non-conventional textiles—A statistical review. Agricultural Sciences, 7, 747–758.

    CAS  CrossRef  Google Scholar 

  30. Yang, C. Q., & Yang, H. (2011). The flame retardant Nomex/cotton, nylon/cotton and polyester/cotton blend fabrics for protective clothing. In S. Vassiliadis (Ed.), Advances in modern woven fabrics technology. IntechOpen. https://doi.org/10.5772/16528.

  31. Rhodes, P., & Graham, C., Jr. (1979). Evaluation of cotton/Kevlar® blends. Textile Research Journal, 49, 28–33.

    CAS  CrossRef  Google Scholar 

  32. Vigneswaran, C., Chandrasekaran, K., & Senthilkumar, P. (2009). Effect of thermal conductivity behavior of jute/cotton blended knitted fabrics. Journal of Industrial Textiles, 38, 289–307. https://doi.org/10.1177/1528083708098915.

    CrossRef  Google Scholar 

  33. Harper, R. J., Bruno, J. S., Blanchard, E. J., & Gautreaux, G. A. (1976). Moisture-related properties of cotton-polyester blend fabrics. Textile Research Journal, 46, 82–90. https://doi.org/10.1177/004051757604600202.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Qamar Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Khanzada, H., Khan, M.Q., Kayani, S. (2020). Cotton Based Clothing. In: Wang, H., Memon, H. (eds) Cotton Science and Processing Technology. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9169-3_15

Download citation