Franke K, Paustenbach D. Government and navy knowledge regarding health hazards of asbestos: a state of the science evaluation (1900 to 1970). Inhal Toxicol. 2011;23(Suppl 3):1–20. https://doi.org/10.3109/08958378.2011.643417.
CAS
CrossRef
PubMed
Google Scholar
Sluis-Cremer GK, Liddell FD, Logan WP, Bezuidenhout BN. The mortality of amphibole miners in South Africa, 1946–80. Br J Ind Med. 1992;49(8):566–75.
CAS
PubMed
PubMed Central
Google Scholar
Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of occupational origin. J Occup Med. 1992;34(7):718–21.
CAS
PubMed
Google Scholar
Linton A, Vardy J, Clarke S, van Zandwijk N. The ticking time-bomb of asbestos: its insidious role in the development of malignant mesothelioma. Crit Rev Oncol Hematol. 2012;84(2):200–12. https://doi.org/10.1016/j.critrevonc.2012.03.001.
CrossRef
PubMed
Google Scholar
Carbone M, Adusumilli PS, Alexander HRJ, Baas P, Bardelli F, Bononi A, et al. Mesothelioma: scientific clues for prevention, diagnosis, and therapy. CA Cancer J Clin. 2019;69:402–29. https://doi.org/10.3322/caac.21572.
CrossRef
PubMed
Google Scholar
Baumann F, Ambrosi JP, Carbone M. Asbestos is not just asbestos: an unrecognised health hazard. Lancet Oncol. 2013;14(7):576–8. https://doi.org/10.1016/S1470-2045(13)70257-2.
CrossRef
PubMed
Google Scholar
Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010;107(28):12611–6. https://doi.org/10.1073/pnas.1006542107.
CrossRef
PubMed
PubMed Central
Google Scholar
Carbone M, Yang H. Mesothelioma: recent highlights. Ann Transl Med. 2017;5(11):238. https://doi.org/10.21037/atm.2017.04.29.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Carbone M, Emri S, Dogan AU, Steele I, Tuncer M, Pass HI, et al. A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat Rev Cancer. 2007;7(2):147–54. https://doi.org/10.1038/nrc2068.
CAS
CrossRef
PubMed
Google Scholar
Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357(9254):444–5. https://doi.org/10.1016/S0140-6736(00)04013-7.
CAS
CrossRef
PubMed
Google Scholar
Carbone M, Flores EG, Emi M, Johnson TA, Tsunoda T, Behner D, et al. Combined genetic and genealogic studies uncover a large BAP1 Cancer syndrome kindred tracing Back nine generations to a common ancestor from the 1700s. PLoS Genet. 2015;11(12):e1005633. https://doi.org/10.1371/journal.pgen.1005633.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013;13(3):153–9.
CAS
CrossRef
Google Scholar
Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998;16(9):1097–112.
CAS
CrossRef
Google Scholar
Ventii KH, Devi NS, Friedrich KL, Chernova TA, Tighiouart M, Van Meir EG, et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res. 2008;68(17):6953–62. https://doi.org/10.1158/0008-5472.CAN-08-0365.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Betti M, Aspesi A, Ferrante D, Sculco M, Righi L, Mirabelli D, et al. Sensitivity to asbestos is increased in patients with mesothelioma and pathogenic germline variants in BAP1 or other DNA repair genes. Genes Chromosomes Cancer. 2018;57(11):573–83. https://doi.org/10.1002/gcc.22670.
CAS
CrossRef
PubMed
Google Scholar
Betti M, Casalone E, Ferrante D, Aspesi A, Morleo G, Biasi A, et al. Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma. Cancer Lett. 2017;405:38–45. https://doi.org/10.1016/j.canlet.2017.06.028.
CAS
CrossRef
PubMed
Google Scholar
Pastorino S, Yoshikawa Y, Pass HI, Emi M, Nasu M, Pagano I, et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other Germline mutations. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36:3485–94. https://doi.org/10.1200/jco.2018.79.0352.
CAS
CrossRef
Google Scholar
Panou V, Gadiraju M, Wolin A, Weipert CM, Skarda E, Husain AN, et al. Frequency of Germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(28):2863–71. https://doi.org/10.1200/jco.2018.78.5204.
CAS
CrossRef
Google Scholar
Hassan R, Morrow B, Thomas A, Walsh T, Lee MK, Gulsuner S, et al. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy. Proc Natl Acad Sci U S A. 2019; https://doi.org/10.1073/pnas.1821510116.
Bertelsen B, Tuxen IV, Yde CW, Gabrielaite M, Torp MH, Kinalis S, et al. High frequency of pathogenic germline variants within homologous recombination repair in patients with advanced cancer. NPJ Genom Med. 2019;4:13. https://doi.org/10.1038/s41525-019-0087-6.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Flores RM. Induction chemotherapy, extrapleural pneumonectomy, and radiotherapy in the treatment of malignant pleural mesothelioma: the memorial Sloan-Kettering experience. Lung Cancer. 2005;49(Suppl 1):S71–4. https://doi.org/10.1016/j.lungcan.2005.03.015.
CrossRef
PubMed
Google Scholar
Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10(4):565–76. https://doi.org/10.1097/JTO.0000000000000471.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Yoshikawa Y, Sato A, Tsujimura T, Emi M, Morinaga T, Fukuoka K, et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 2012;103(5):868–74. https://doi.org/10.1111/j.1349-7006.2012.02223.x.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75(2):264–9. https://doi.org/10.1158/0008-5472.can-14-1008.
CAS
CrossRef
PubMed
Google Scholar
Lo Iacono M, Monica V, Righi L, Grosso F, Libener R, Vatrano S, et al. Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol. 2015;10(3):492–9. https://doi.org/10.1097/jto.0000000000000436.
CAS
CrossRef
PubMed
Google Scholar
Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43(7):668–72. https://doi.org/10.1038/ng.855.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Eckel-Passow JE, Serie DJ, Cheville JC, Ho TH, Kapur P, Brugarolas J, et al. BAP1 and PBRM1 in metastatic clear cell renal cell carcinoma: tumor heterogeneity and concordance with paired primary tumor. BMC Urol. 2017;17(1):19. https://doi.org/10.1186/s12894-017-0209-3.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chirac P, Maillet D, Lepretre F, Isaac S, Glehen O, Figeac M, et al. Genomic copy number alterations in 33 malignant peritoneal mesothelioma analyzed by comparative genomic hybridization array. Hum Pathol. 2016;55:72–82. https://doi.org/10.1016/j.humpath.2016.04.015.
CAS
CrossRef
PubMed
Google Scholar
Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, Ohmuraya M, Sato A, Tsujimura T, et al. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci U S A. 2016;113(47):13432–7. https://doi.org/10.1073/pnas.1612074113.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ly P, Cleveland DW. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 2017;27(12):917–30. https://doi.org/10.1016/j.tcb.2017.08.005.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mansfield AS, Peikert T, Smadbeck JB, Udell JBM, Garcia-Rivera E, Elsbernd L, et al. Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. J Thorac Oncol. 2019;14(2):276–87. https://doi.org/10.1016/j.jtho.2018.10.001.
CAS
CrossRef
PubMed
Google Scholar
Bjorkqvist AM, Tammilehto L, Anttila S, Mattson K, Knuutila S. Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma. Br J Cancer. 1997;75(4):523–7. https://doi.org/10.1038/bjc.1997.91.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hagemeijer A, Versnel MA, Van Drunen E, Moret M, Bouts MJ, van der Kwast TH, et al. Cytogenetic analysis of malignant mesothelioma. Cancer Genet Cytogenet. 1990;47(1):1–28. https://doi.org/10.1016/0165-4608(90)90258-c.
CAS
CrossRef
PubMed
Google Scholar
Taguchi T, Jhanwar SC, Siegfried JM, Keller SM, Testa JR. Recurrent deletions of specific chromosomal sites in 1p, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res. 1993;53(18):4349–55.
CAS
PubMed
Google Scholar
Hu Q, Akatsuka S, Yamashita Y, Ohara H, Nagai H, Okazaki Y, et al. Homozygous deletion of CDKN2A/2B is a hallmark of iron-induced high-grade rat mesothelioma. Lab Investig. 2010;90(3):360–73. https://doi.org/10.1038/labinvest.2009.140.
CAS
CrossRef
PubMed
Google Scholar
Nabeshima K, Matsumoto S, Hamasaki M, Hida T, Kamei T, Hiroshima K, et al. Use of p16 FISH for differential diagnosis of mesothelioma in smear preparations. Diagn Cytopathol. 2016;44(9):774–80. https://doi.org/10.1002/dc.23501.
CrossRef
PubMed
Google Scholar
Hamasaki M, Matsumoto S, Abe S, Hamatake D, Kamei T, Hiroshima K, et al. Low homozygous/high heterozygous deletion status by p16 FISH correlates with a better prognostic group than high homozygous deletion status in malignant pleural mesothelioma. Lung Cancer. 2016;99:155–61. https://doi.org/10.1016/j.lungcan.2016.07.011.
CrossRef
PubMed
Google Scholar
Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC, Seizinger B, et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A. 1995;92(24):10854–8. https://doi.org/10.1073/pnas.92.24.10854.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF, et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 1995;55(6):1227–31.
CAS
PubMed
Google Scholar
Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71(3):873–83. https://doi.org/10.1158/0008-5472.CAN-10-2164.
CAS
CrossRef
PubMed
Google Scholar
Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16. https://doi.org/10.1038/ng.3520.
CAS
CrossRef
PubMed
Google Scholar
Panagopoulos I, Thorsen J, Gorunova L, Haugom L, Bjerkehagen B, Davidson B, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer. 2013;52(7):610–8. https://doi.org/10.1002/gcc.22057.
CAS
CrossRef
PubMed
Google Scholar
Hung YP, Dong F, Watkins JC, Nardi V, Bueno R, Dal Cin P, et al. Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 2018;4(2):235–8. https://doi.org/10.1001/jamaoncol.2017.2918.
CrossRef
PubMed
Google Scholar
Bruno R, Ali G, Giannini R, Proietti A, Lucchi M, Chella A, et al. Malignant pleural mesothelioma and mesothelial hyperplasia: a new molecular tool for the differential diagnosis. Oncotarget. 2017;8(2):2758–70. https://doi.org/10.18632/oncotarget.13174.
CrossRef
PubMed
Google Scholar
De Rienzo A, Richards WG, Yeap BY, Coleman MH, Sugarbaker PE, Chirieac LR, et al. Sequential binary gene ratio tests define a novel molecular diagnostic strategy for malignant pleural mesothelioma. Clin Cancer Res. 2013;19(9):2493–502. https://doi.org/10.1158/1078-0432.CCR-12-2117.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lo Russo G, Tessari A, Capece M, Galli G, de Braud F, Garassino MC, et al. MicroRNAs for the diagnosis and management of malignant pleural mesothelioma: a literature review. Front Oncol. 2018;8:650. https://doi.org/10.3389/fonc.2018.00650.
CrossRef
PubMed
PubMed Central
Google Scholar
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386–96. https://doi.org/10.1016/S1470-2045(17)30621-6.
CrossRef
PubMed
Google Scholar
Hmeljak J, Sanchez-Vega F, Hoadley KA, Shih J, Stewart C, Heiman D, et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 2018;8(12):1548–65. https://doi.org/10.1158/2159-8290.Cd-18-0804.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar