Skip to main content

Tidal and Wave Energy Potential Assessment

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The utilization of renewable energy sources has significantly increased in the last decade to combat the dire impact of fossil fuel emissions and sustain green energy sources in the future. Consequently, various renewable energy sources have been considered for energy production to fulfill the growing energy demands. In this modern era, technologies with the capacity of generating electricity using tidal and wave energy have been realized and now existed in many countries. This chapter presents the potential of producing offshore renewable energy from waves and tides at the ocean. Tidal and wave energies could be assets in the overall global energy production as they have high energy densities and bring many benefits, particularly in alleviating issues related to the extended use of fossil fuels. The enhanced utilization of wave and tidal energy in the future would also bring opportunity in sustaining green energy supplies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barreto RA (2018) Fossil fuels, alternative energy and economic growth. Econ Model 75:196–220

    Article  Google Scholar 

  2. Chala G, Abd Aziz A, Hagos F (2018) Natural gas engine technologies: challenges and energy sustainability issue. Energies 11

    Google Scholar 

  3. Ma’arof M, Chala GT, Ravichanthiran S (2018) A study on microbial fuel cell (MFC) with graphite electrode to power underwater monitoring devices. In J Mech Technol 9:98–105

    Google Scholar 

  4. Guangul FM, Chala GT (2019) SWOT analysis of wind energy as a promising conventional fuels substitute. In: 2019 4th MEC international conference on big data and smart city (ICBDSC), pp 1–6

    Google Scholar 

  5. Guangul FM, Chala GT (2019) Solar energy as renewable energy source: SWOT analysis. In: 2019 4th MEC international conference on big data and smart city (ICBDSC), pp 1–5

    Google Scholar 

  6. Chala GT, Guangul FM, Sharma R (2019) Biomass energy in Malaysia—a SWOT analysis. In: 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT), pp 401–406

    Google Scholar 

  7. Uihlein A, Magagna D (2016) Wave and tidal current energy—A review of the current state of research beyond technology. Renew Sustain Energy Rev 58:1070–1081

    Article  Google Scholar 

  8. Garrett C, Cummins P (2008) Limits to tidal current power. Renew Energy 33:2485–2490

    Article  Google Scholar 

  9. Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renew Energy 44:296–304

    Article  Google Scholar 

  10. Mirzaei A, Tangang F, Juneng L (2014) Wave energy potential along the east coast of Peninsular Malaysia. Energy 68:722–734

    Article  Google Scholar 

  11. Cornett AM (2008) A global wave energy resource assessment. In: The Eighteenth international offshore and polar engineering conference

    Google Scholar 

  12. Bryden I, Grinsted T, Melville G (2004) Assessing the potential of a simple tidal channel to deliver useful energy. Appl Ocean Res 26:198–204

    Article  Google Scholar 

  13. Elwood D, Yim SC, Prudell J, Stillinger C, von Jouanne A, Brekken T et al (2010) Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renew Energy 35:348–354

    Article  Google Scholar 

  14. Carstensen J, Henriksen O, Teilmann J (2006) Impacts of offshore wind farm construction on harbour porpoises: acoustic monitoring of echolocation activity using porpoise detectors (T-PODs). Mar Ecol Prog Ser 321:295–308

    Article  Google Scholar 

  15. Soleimani K, Ketabdari MJ, Khorasani F (2015) Feasibility study on tidal and wave energy conversion in Iranian seas. Sustain Energy Technol Assess 11:77–86

    Google Scholar 

  16. Li JQ, Mei YY, Zhou XW, Zheng JT (2011) Review and tendency on development for Tidal Power Station. Appl Mech Mater, pp 2226–2230

    Google Scholar 

  17. Khan N, Kalair A, Abas N, Haider A (2017) Review of ocean tidal, wave and thermal energy technologies. Renew Sustain Energy Rev 72:590–604

    Article  Google Scholar 

  18. Wilson E (1972) Tidal energy and its development. In: Ocean 72-IEEE international conference on engineering in the ocean environment, pp 48–56

    Google Scholar 

  19. Rourke FO, Boyle F, Reynolds A (2010) Tidal energy update 2009. Appl Energy 87:398–409

    Article  Google Scholar 

  20. Etemadi A, Emami Y, AsefAfshar O, Emdadi A (2011) Electricity generation by the tidal barrages. Energy Proc 12:928–935

    Article  Google Scholar 

  21. Aboobacker VM, Shanas PR, Alsaafani MA, Albarakati AMA (2017) Wave energy resource assessment for Red Sea. Renew Energy 114:46–58

    Article  Google Scholar 

  22. Sleiti AK (2017) Tidal power technology review with potential applications in Gulf Stream. Renew Sustain Energy Rev 69:435–441

    Article  Google Scholar 

  23. Jahanshahi A, Kamali M, Khalaj M, Khodaparast Z (2019) Delphi-based prioritization of economic criteria for development of wave and tidal energy technologies. Energy 167:819–827

    Article  Google Scholar 

  24. Kempener R, Neumann F (2014) IRENA ocean energy technology brief-tidal energy. International Renewable Energy Agency

    Google Scholar 

  25. SEOS. Ocean current. Available: https://www.seos-project.eu/oceancurrents/oceancurrents-c05-p01.nl.html. Accessed on 10 Dec 2019

  26. Esteban MD, Espada JM, Ortega JM, López-Gutiérrez J-S, Negro V (2019) What about marine renewable energies in Spain? J Marine Sci Eng 7:249

    Article  Google Scholar 

  27. Kempner R (2014) Ocean energy technology brief 4. International Renewable Energy Agency–IRENA

    Google Scholar 

  28. Alcorn R (2014) Wave energy (Chap. 17). In: Letcher TM (ed) Future energy, 2nd ed. Elsevier, Boston, pp 357–382

    Google Scholar 

  29. I. R. E. A. (IRENA) (2020) Renewable capacity statistics 2020. Available: https://www.irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020. Accessed on 10 March 2020

  30. Iyer A, Couch S, Harrison G, Wallace A (2013) Variability and phasing of tidal current energy around the United Kingdom. Renew Energy 51:343–357

    Article  Google Scholar 

  31. Fanning T, Jones C, Munday M (2014) The regional employment returns from wave and tidal energy: A Welsh analysis. Energy 76:958–966

    Article  Google Scholar 

  32. Ecofriend (2017) Eco friendly tidal energy: The good, the bad and the ugly. Available: https://ecofriend.com/tidal-energy-the-good-the-bad-and-the-ugly.html. Accessed on 10 Dec 2019

  33. (2015) Netherlands tidal power array installed. Available: https://www.powerengineeringint.com/renewables/netherlands-tidal-power-array-installed/. Accessed on 10 Sept 2019

  34. Energy.novascotia.ca. (2017) Top 10 things you need to know about tidal energy in Nova Scotia

    Google Scholar 

  35. E. s. a. u. (2017) Tidal power. Available: https://www.esru.strath.ac.uk/EandE/Web_sites/01-02/RE_info/Tidal%20Power.htm. Accessed on 19 Nov 2019

  36. Sakmani AS, Lam W-H, Hashim R, Chong H-Y (2013) Site selection for tidal turbine installation in the Strait of Malacca. Renew Sustain Energy Rev 21:590–602

    Article  Google Scholar 

  37. Chong H-Y, Lam W-H (2013) Ocean renewable energy in Malaysia: the potential of the Straits of Malacca. Renew Sustain Energy Rev 23:169–178

    Article  Google Scholar 

  38. Drew B, Plummer AR, Sahinkaya MN (2009) A review of wave energy converter technology. Sage, London

    Google Scholar 

  39. Alonso R, Jackson M, Santoro P, Fossati M, Solari S, Teixeira L (2017) Wave and tidal energy resource assessment in Uruguayan shelf seas. Renewable Energy 114:18–31

    Article  Google Scholar 

  40. L. KS. (2015) Outlook for ocean energy development in Korea. In: the East Asian Seas Congress. Available: https://eascongress.pemsea.org/sites/default/files/file_attach/PPT-S3W3-10-Lee.pdf. Accessed on 17 Jan 2019

  41. Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Kadner S, Zwickel T et al (2011) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  42. Neill SP, Vögler A, Goward-Brown AJ, Baston S, Lewis MJ, Gillibrand PA et al (2017) The wave and tidal resource of Scotland. Renew Energy 114:3–17

    Article  Google Scholar 

  43. P. Technology (2017) Tidal giants - the world’s five biggest tidal power plants. Available: Available at: https://www.power-technology.com/features/featuretidal-giants-the-worlds-five-biggest-tidal-power-plants-4211218/. Accessed on 15 May 2019

  44. Shadman M, Silva C, Faller D, Wu Z, de Freitas Assad LP, Landau L et al (2019) Ocean renewable energy potential, technology, and deployments: a case study of Brazil. Energies 12:3658

    Google Scholar 

  45. Bai G, Li J, Fan P, Li G (2013) Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines. Renew Energy 53:180–186

    Article  Google Scholar 

  46. Neill SP, Hashemi MR (2018) Wave energy (Chap. 5). In: Neill SP, Hashemi MR (eds) Fundamentals of ocean renewable energy. Academic Press, pp 107–140

    Google Scholar 

  47. Bae YH, Kim KO, Choi BH (2010) Lake Sihwa tidal power plant project. Ocean Eng 37:454–463

    Article  Google Scholar 

  48. Magagna D, MacGillivray A, Jeffrey H, Hanmer C, Raventos A, Badcock-Broe A et al (2014) Wave and tidal energy strategic technology agenda. SI Ocean 44:1–44

    Google Scholar 

  49. Magagna D, Uihlein A (2015) 2014 JRC ocean energy status report. European Commission Joint Research Centre

    Google Scholar 

  50. Slater M, Schultz A, Jones R, Fischer C (2010) Electromagnetic field study

    Google Scholar 

  51. de O Falcão AF (2010) Wave energy utilization: a review of the technologies. Renew Sustain Energy Rev 14:899–918

    Google Scholar 

  52. Ghosh S, Chakraborty T, Saha S, Majumder M, Pal M (2016) Development of the location suitability index for wave energy production by ANN and MCDM techniques. Renew Sustain Energy Rev 59:1017–1028

    Article  Google Scholar 

  53. A. E. Tutorials. Environmental impact of wave energy devices. Available: https://www.alternative-energy-tutorials.com/energy-articles/environmental-impact-of-wave-energy.html. Accessed on 10 March 2020

  54. Chala GT, Ma’Arof M, Sharma R (2019) Trends in an increased dependence towards hydropower energy utilization-A short review. Cogent Eng, p 1631541

    Google Scholar 

  55. Shields M, Ford A, Woolf D (2008) Ecological considerations for tidal energy development in Scotland. In: 10th world renewable energy conference

    Google Scholar 

  56. Frid C, Andonegi E, Depestele J, Judd A, Rihan D, Rogers SI et al (2012) The environmental interactions of tidal and wave energy generation devices. Environ Impact Assess Rev 32:133–139

    Article  Google Scholar 

  57. Nunneri C, Lenhart HJ, Burkhard B, Windhorst W (2008) Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ Change 8:31–43

    Article  Google Scholar 

  58. Michel J, Dunagan H, Boring C, Healy E, Evans W, Dean J et al (2007) Worldwide synthesis and analysis of existing information regarding environmental effects of alternative energy uses on the outer continental shelf. US Department of the Interior, Minerals Management Service, Herndon, VA, MMS OCS Report, vol 38, p 254

    Google Scholar 

  59. S. E. ASSESSMENT and O. M. R. ENGERY (2007) Collision risks between marine renewable energy devices and mammals, fish and diving birds

    Google Scholar 

  60. Polagye B, Copping A, Kirkendall K, Boehlert G, Walker S, Wainstein M et al (2010) Environmental effects of tidal energy development: a scientific workshop. University of Washington, Seattle, Seattle, WA, USA, NMFS F/SPO-116, NOAA

    Google Scholar 

  61. Gill AB (2005) Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J Appl Ecol 42:605–615

    Article  Google Scholar 

  62. Gill A, Bartlett M, Thomsen F (2012) Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J Fish Biol 81:664–695

    Article  Google Scholar 

  63. Block E (2008) Tidal power: an update. Renew Energy Focus 9:58–61

    Article  Google Scholar 

  64. Uihlein A (2016) Life cycle assessment of ocean energy technologies. Int J Life Cycle Assess 21:1425–1437

    Article  Google Scholar 

  65. Rozenblat L (2017) Renewable energy sources: cost comparison. Available: https://www.renewable-energysources.com/. Accessed on 11 Apr 2020

  66. Magagna D, Monfardini R, Uihlein A (2016) JRC ocean energy status report 2016 edition. Publications Office of the European Union

    Google Scholar 

  67. Jenne DS, Yu Y-H, Neary V (2015) Levelized cost of energy analysis of marine and hydrokinetic reference models. National Renewable Energy Lab. (NREL), Golden, CO (United States)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girma T. Chala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chala, G.T., Ma’arof, M.I.N., Guangul, F.M. (2021). Tidal and Wave Energy Potential Assessment. In: Sulaiman, S.A. (eds) Clean Energy Opportunities in Tropical Countries. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9140-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9140-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9139-6

  • Online ISBN: 978-981-15-9140-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics