Skip to main content

Parts-Per-Million-Level Doping Effects and Organic Solar Cells Having Doping-Based Junctions

  • Chapter
  • First Online:
Organic Solar Cells
  • 812 Accesses

Abstract

Controlling the pn-type behavior of a semiconductor such as silicon by adding an extremely small quantity of an impurity (doping) has been a central part of inorganic semiconductor electronics since the 20th century. Recent progress in the doping of organic semiconductors strongly suggests the advent of a new era of doped organic semiconductors. In this chapter, the principles and effects of doping at the level of parts per million (ppm) in organic semiconductor films and in single crystals are summarized. This chapter includes descriptions of complete pn-control, doping sensitization, ppm-doping effects in organic single crystals measured by the Hall effect. The Wannier excitonic doping of organic single crystals possessing band conduction and the defect science of organic single crystals related to carrier trapping and scattering are introduced as a new scientific field. In addition, organic junctions made by ppm-doping technology are summarized. The pn-homojunctions in the single films as well as the D/A co-deposited films and the ohmic junctions at organic/metal and organic/organic interfaces, which are indispensable to fabricate novel organic solar cells, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin, M., Andre, J.J., Simon, J.: Influence of dioxygen on the junction properties of metallophthalocyanine based devices. J. Appl. Phys. 54, 2792–2794 (1983)

    Article  CAS  Google Scholar 

  2. Tada, H., Touda, H., Takada, M., Matsushige, K.: Quasi-intrinsic semiconducting state of titanyl-phthalocyanine films obtained under ultrahigh vacuum conditions. Appl. Phys. Lett. 76, 873–875 (2000)

    Article  CAS  Google Scholar 

  3. Hiramoto, M., Kishigami, Y., Yokoyama, M.: Doping effect on the two-layer organic solar cell. Chem. Lett. 1990, 119–122 (1990)

    Article  Google Scholar 

  4. Akamatsu, H., Inokuchi, H., Matsunaga, Y.: Electrical conductivity of the perylene–bromine complex. Nature 173, 168–169 (1954)

    Article  CAS  Google Scholar 

  5. Hiramoto, M., Ihara, K., Fukusumi, H., Yokoyama, M.: Conduction type control from n to p type for organic pigment films purified by reactive sublimation. J. Appl. Phys. 78, 7153–7157 (1995)

    Article  CAS  Google Scholar 

  6. Hiramoto, M., Ihara, K., Yokoyama, M.: Fermi level shift in photoconductive organic pigment films measured by Kelvin vibrating capacitor method. Jpn. J. Appl. Phys. 34, 3803–3807 (1995)

    Article  CAS  Google Scholar 

  7. Hiramoto, M.: Organic solar cells incorporating a p-i-n junction and a p-n homojunction. In: Sun, S. -S., Sariciftci, N. S. (ed.) Organic photovoltaics, Mechanisms, Materials and Devices, p. 268. CRC Press, New York (2005)

    Google Scholar 

  8. Huang, S.J., Pfeiffer, M., Werner, A., Blochwitz, J., Leo, K., Liu, Y.S.: Low-voltage organic electroluminescent devices using pin structures. Appl. Phys. Lett. 80, 139–141 (2002)

    Article  CAS  Google Scholar 

  9. Blochwitz, J., Pfeiffer, M., Fritz, T., Leo, K.: Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl. Phys. Lett. 73, 729–731 (1998)

    Article  CAS  Google Scholar 

  10. Tietze, M.L., Pahner, P., Schmidt, K., Leo, K., Lüssem, B.: Doped organic semiconductors: trap-filling, impurity saturation, and reserve regimes. Adv. Funct. Mater. 25, 2701–2707 (2015)

    Article  CAS  Google Scholar 

  11. Koech, P.K., Padmaperuma, A.B., Wang, L., Swensen, J.S., Polikarpov, E., Darsell, J.T., Rainbolt, J.E., Gaspar, D.J.: Synthesis and application of 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6-TNAP): A conductivity dopant for organic light-emitting devices. Chem. Mater. 22, 3926–3932 (2010)

    Article  CAS  Google Scholar 

  12. Cho, S.H., Pyo, S.W., Suh, M.C.: Low voltage top-emitting organic light emitting devices by using 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile. Synth. Met. 162, 402–405 (2012)

    Article  CAS  Google Scholar 

  13. Solomeshch, O., Yu, Y.J., Goryunkov, A.A., Sidorov, L.N., Tuktarov, R.F., Choi, D.H., Jin, J. –ll., Tessler, N.: Ground-state interaction and electrical doping of fluorinated C60 in conjugated polymers. Adv. Mater. 21, 4456–4460 (2009)

    Google Scholar 

  14. Tokito, S., Noda, K., Taga, Y., J. Phys. D: Metal oxides as a hole-injecting layer for an organic electroluminescent device. Appl. Phys. 29, 2750–2753 (1996)

    Google Scholar 

  15. Matsushima, T., Kinoshita, Y., Murata, H.: Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers. Appl. Phys. Lett. 91, 253504 (3 pages) (2007)

    Google Scholar 

  16. Harada, K., Werner, A.G., Pfeiffer, M., Bloom, C.J., Elliott, C.M., Leo, K.: Organic homojunction diodes with a high built-in potential: interpretation of the current-voltage characteristics by a generalized Einstein relation. Phys, Rev. Lett. 94, 036601 (4 pages) (2005)

    Google Scholar 

  17. Chan, C.K., Zhao, W., Barlow, S., Marder, S., Kahn, A.: Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices. Org. Electron. 9, 575–581 (2008)

    Article  CAS  Google Scholar 

  18. Harada, K., Riede, M., Leo, K.: Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses. Phys. Rev. B 77, 195212 (9 pages) (2008)

    Google Scholar 

  19. Chan, C.K., Amy, F., Zhang, Q., Barlow, S., Marder, S., Kahn, A.: N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene. Chem. Phys. Lett. 431, 67–71 (2006)

    Article  CAS  Google Scholar 

  20. Tietze, M.L., Wolzl, F., Menke, T., Fischer, A., Riede, M., Leo, K., Lüssem, B.: Self-passivation of molecular n-type doping during air exposure using a highly efficient air-instable dopant. Phys. Status Solidi A 210, 2188–2198 (2013)

    Article  CAS  Google Scholar 

  21. Liao, H. –H., Chen, L. –M., Xu, Z., Li, G., Yang, Y.: Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl. Phys. Lett. 92, 173303 (3 pages) (2008)

    Google Scholar 

  22. Hamwi, S., Riedl, T., Kowalsky, W.: An organic p-i-n homojunction as ultra violet light emitting diode and visible-blind photodiode in one. Appl. Phys. Lett. 99, 053301 (3 pages) (2011)

    Google Scholar 

  23. Olthof, S., Mehraeen, S., Mohapatra, S.K., Barlow, S., Coropceanu, V., Bre´das, J.-L., Marder, S.R., Kahn, A.: Ultralow doping in organic semiconductors: Evidence of trap filling. Phys, Rev. Lett. 109, 176601 (5 pages) (2012)

    Google Scholar 

  24. Ohashi, C., Shinmura, Y., Kubo, M., Hiramoto, M.: Effects of doping at the ppm level in Simple n+ p-homojunction organic photovoltaic cells. Org. Electron. 27, 151–154 (2015)

    Article  CAS  Google Scholar 

  25. Ohashi, C., Izawa, S., Shinmura, Y., Kikuchi, M., Watase, S., Izaki, M., Naito, H., Hiramoto, M.: Hall effect in bulk-doped organic single crystals. Adv. Mater. 29, 1605619 (6 pages) (2017)

    Google Scholar 

  26. Shinmura, Y., Yamashina, Y., Kaji, T., Hiramoto, M.: Ionization sensitization of doping in codeposited organic semiconductor films. Appl. Phys. Lett. 105, 183306 (5 pages) (2014)

    Google Scholar 

  27. Lüssem, B., Riede, M., Leo, K.: Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013)

    Article  Google Scholar 

  28. Walzer, K., Maennig, B., Pfeiffer, M., Leo, K.: Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007a)

    Article  CAS  PubMed  Google Scholar 

  29. Hains, A.W., Liang, Z., Woodhouse, M.A., Gregg, B.A.: Molecular semiconductors in organic photovoltaic cells. Chem. Rev. 110, 6689–6735 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Lüssem, B., Keum, C.M., Kasemann, D., Naab, B., Bao, Z., Leo, K.: Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016)

    Article  PubMed  Google Scholar 

  31. Ibach, H., Luth, H.: Solid-State Physics. 4th Edition, Chap.12. Springer-Verlag Berlin (2009)

    Google Scholar 

  32. Hebard, F.A., Hadon, C.R., Fleming, M.R., Kortan, R.A.: Deposition and characterization of fullerene films. Appl. Phys. Lett. 59, 2109–2111 (1991)

    Article  CAS  Google Scholar 

  33. Salzmann, I., Heimel, G., Oehzelt, M., Winkler, S., Koch, N.: Molecular electrical doping of organic semiconductors: Fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res. 49, 370–378 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. Salzmann, I., Heimel, G., Duhm, S., Oehzelt, M., Pingel, P., George, B., Schnegg, A., Lips, K., Blum, R.-P., Vollmer, A., Koch, N.: Intermolecular hybridization governs molecular electrical doping. Phys. Rev. Lett. 108, 035502 (5 pages) (2012)

    Google Scholar 

  35. Laudise, R.A., Kloc, C., Simpkins, P.G., Siegrist, T.: Physical vapor growth of organic semiconductors. J. Cryst. Growth 187, 449–454 (1998)

    Article  CAS  Google Scholar 

  36. Hiramoto, M., Kubo, M., Shinmura, Y., Ishiyama, N., Kaji, T., Sakai, K., Ohno, T., Izaki, M.: Bandgap science for organic solar cells. Electronics 3, 351–380 (2014)

    Article  CAS  Google Scholar 

  37. Saito, S., Soumura, T., Maeda, T.: Improvements of the piezoelectric driven Kelvin probe. J. Vac. Sci. Technol. A, 2, 1389–1391 (1984)

    Google Scholar 

  38. Ito, E., Oji, H., Hayashi, N., Ishii, H., Ouchi, Y., Seki, K.: Electronic structures of TPD/metal interfaces studied by photoemission and Kelvin probe method. Appl. Surf. Sci. 175, 407–411 (2001)

    Article  Google Scholar 

  39. Ishiyama, N., Kubo, M., Kaji, T., Hiramoto, M.: Tandem photovoltaic cells formed in single fullerene films by impurity doping. Appl. Phys. Lett. 101, 233303 (3 pages) (2012)

    Google Scholar 

  40. Falkenberg, C., Uhrich, C., Olthof, S., Maennig, B., Riede, M., Leo, K.: Efficient type organic solar cells incorporating 1,4,5,8-naphthalenetetracarboxylic dianhydride as transparent electron transport material. J. Appl. Phys. 104, 034506 (6 pages) (2008)

    Google Scholar 

  41. Yoshida, H.: Low-energy inverse photoemission spectroscopy using a high-resolution grating spectrometer in the near ultraviolet range. Rev. Sci. Instrum. 84, 103901 (5 pages) (2013)

    Google Scholar 

  42. Kubo, M., Iketaki, K., Kaji, T., Hiramoto, M.: Conduction-type control of fullerene films from n- to p-type by molybdenum oxide doping. Appl. Phys. Lett. 98, 073311 (3 pages) (2011)

    Google Scholar 

  43. Hiramoto, M., Fujiwara, H., Yokoyama, M.: Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 58, 1062–1064 (1991)

    Article  CAS  Google Scholar 

  44. Hiramoto, M., Fujiwara, H., Yokoyama, M.: p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments. J. Appl. Phys. 72, 3781–3787 (1992)

    Article  CAS  Google Scholar 

  45. Kubo, M., Kaji, T., Hiramoto, M.: pn-homojunction organic solar cells formed in phase-separated co-deposited films. Appl. Phys. Lett. 103, 263303 (4 pages) (2013)

    Google Scholar 

  46. Kubo, M., Shinmura, Y., Ishiyama, N., Kaji, T., Hiramoto, M.: Junction formation by doping in H2Pc:C60 co-evaporated films for solar cell application. Mol. Cryst. Liq. Cryst. 581, 13–17 (2013)

    Article  CAS  Google Scholar 

  47. Ishiyama, N., Kubo, M., Kaji, T., Hiramoto, M.: Tandem organic solar cells formed in co-deposited films by doping. Org. Electron. 14, 1793–1796 (2013)

    Article  CAS  Google Scholar 

  48. Hamwi, S., Meyer, J., Winkler, T., Riedl, T., Kowalsky, W.: p-type doping efficiency of MoO3 in organic hole transport materials. Appl. Phys. Lett. 94, 253307 (3 pages) (2009)

    Google Scholar 

  49. Ishiyama, N., Kubo, M., Kaji, T., Hiramoto, M.: Doping-based control of the energetic structure of photovoltaic co-deposited films. Appl. Phys. Lett. 99, 133301 (3 pages) (2011)

    Google Scholar 

  50. Kröger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., Kahn, A.: P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide. Org. Electron. 10, 932–938 (2009)

    Article  Google Scholar 

  51. Tietze, M., Burtone, L., Riede, M., Lussem, B., Leo, K.: Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: A photoelectron spectroscopy and theoretical study. Phys. Rev. B, 86, 035320 (12 pages) (2012)

    Google Scholar 

  52. Walzer, K., Maennig, B., Pfeiffer, M., Leo, K.: Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007b)

    Article  CAS  PubMed  Google Scholar 

  53. deMello, J.C., Tessler, N., Graham, S.C., Friend, R.H.: Ionic space-charge effects in polymer light-emitting diodes. Phys. Rev. B 57, 12951–12963 (1998)

    Article  CAS  Google Scholar 

  54. Hiramoto, M., Tomioka, A., Suemori, K.: Yokoyama, M. Formation of ohmic contacts to perylene molecular crystals. Appl. Phys. Lett. 85, 1852–1854 (2004)

    Google Scholar 

  55. Kubo, M., Shinmura, Y., Ishiyama, N., Kaji, T., Hiramoto, M.: Invertible organic photovoltaic cells with heavily-doped organic/metal ohmic contacts. Appl. Phys. Exp. 5, 092302 (3 pages) (2012)

    Google Scholar 

  56. Kubo, M., Kaji, T., Hiramoto M.: pn-homojunction formation in single fullerene films. AIP Advances 1, 032177 (5 pages) (2011)

    Google Scholar 

  57. Ishiyama, N., Kubo, M., Kaji, T., Hiramoto, M.: Tandem photovoltaic cells formed in single fullerene films by impurity doping. Appl. Phys. Lett. 101, 233303 (3pages) (2012)

    Google Scholar 

  58. Hiramoto, M., Suezaki, M., Yokoyama, M.: Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell. Chem. Lett. 19, 327–330 (1990)

    Article  Google Scholar 

  59. Yuan, Y., Huang, J., Li, G.: Intermediate layers in tandem organic solar cells. Green 1, 65–80 (2011)

    Article  CAS  Google Scholar 

  60. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1969)

    Google Scholar 

  61. Yamashina, Y., Shinmura, Y., Ishiyama, N., Kaji, T., Hiramoto, M.: Mapping of band-bending in organic pn-homojunctions. J. Appl. Phys. 117, 125501 (5 pages) (2015)

    Google Scholar 

  62. Shinmura, Y., Kubo, M., Ishiyama, N., Kaji, T., Hiramoto, M.: pn-control and pn-homojunction formation of metal-free phthalocyanine by doping. AIP Advances 2, 032145 (6 pages) (2012)

    Google Scholar 

  63. Ishiyama, N., Yoshioka, T., Kaji, T., Hiramoto, M.: Tuning of barrier parameters of n-type Schottky junctions in photovoltaic co-deposited films by doping. Appl. Phys. Exp. 6, 012301 (3 pages) (2013)

    Google Scholar 

  64. Yoshida, H.: Measuring the electron affinity of organic solids: an indispensable new tool for organic electronics. Anal. Bioanal. Chem. 406, 2231–2237 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. Yoshida, H.: Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons. Chem. Phys. Lett. 539, 180–185 (2012)

    Article  Google Scholar 

  66. Pahner, P., Kleemann, H., Burtone, L., Tietze, M.L., Fischer, J., Leo, K., Lussem, B.: Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response. Phys. Rev. B 88, 195205 (8 pages) (2013)

    Google Scholar 

  67. Tietze, M.L., Benduhn, J., Pahner, P., Nell, B., Schwarze, M., Kleemann, H., Krammer, M., Zojer, K., Vandewal, K., Leo, K.: Elementary steps in electrical doping of organic semiconductors. Nat. Comm. 9, 1182 (8 pages) (2018)

    Google Scholar 

  68. Harada, K., Li, F., Maenning, B., Pfeiffer, M., Leo, K.: Ionized impurity scattering in n-doped C60 thin films. Appl. Phys. Lett. 91, 092118 (3 pages) (2007)

    Google Scholar 

  69. Harada, K., Sumino, M., Adachi, C., Tanaka, S., Miyazaki, K.: Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ). Appl. Phys. Lett. 96, 253304 (3 pages) (2010)

    Google Scholar 

  70. Lee, B., Chen, Y., Fu, D., Yi, H.T., Czelen, K., Najafov, H., Podzorov, V.: Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors. Nat. Mater. 12, 1125–1129 (2013)

    Article  CAS  PubMed  Google Scholar 

  71. Podzorov, V., Menard, E., Rogers, J.A., Gershenson, M.E.: Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (4 pages) (2005)

    Google Scholar 

  72. Takeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., Iwasa, Y.: In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (4 pages) (2007)

    Google Scholar 

  73. Zeng, X., Wang, L., Duan, L., Qiu, Y.: Homoepitaxy growth of well-ordered rubrene thin films. Cryst. Growth Des. 8, 1617–1622 (2008)

    Article  CAS  Google Scholar 

  74. Hiramoto, M.: Title. Advances in Chemical Physics. In: Rice S.A., Dinner A. R. John Wiley & sons, New York, vol. 162, p. 160 (2017)

    Google Scholar 

  75. Hiramoto, M.: Energetic and nanostructural design of organic solar cells. In the book “Organic Solar Cells, Advances in Research and Applications”. Voronov, M. (ed). Nova Science Publishers, New York Chap. 1, p. 7 (2017)

    Google Scholar 

  76. Helou, M.E., Medenbach, O., Witte, G.: Rubrene microcrystals: A route to investigate surface morphology and bulk anisotropies of organic semiconductors. Cryst. Growth Des. 10, 3496–3501 (2010)

    Article  Google Scholar 

  77. Kittel, C.: Introduction to Solid State Physics. John Wiley & sons, New York. 5th ed., Chap. 17 (2017)

    Google Scholar 

  78. Anderson, B.L., Anderson, R.L.: Fundamentals of Semiconductor Devices. The McGraw-Hill Companies, New York. Chap. 3 (2005)

    Google Scholar 

  79. Conwell, E.M., Weisskopf, V.F.: Theory of impurity scattering in semiconductors. Phys. Rev. 77, 388–390 (1950)

    Article  Google Scholar 

  80. Erginsoy, C.: Neutral impurity scattering in semiconductors. Phys. Rev. 79, 1013–1014 (1950)

    Article  CAS  Google Scholar 

  81. Takeya, J., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., Iwasa, Y.: Hall effect of 1uasi-hole gas in organic single crystal transistors. Jpn. J. Appl. Phys. 44, L1393-1396 (2005)

    Article  CAS  Google Scholar 

  82. Liu, C., Minari, T., Lu, X., Kumatani, A., Takimiya, K., Tsukagoshi, K.: Solution-processable organic single crystals with bandlike transport in field-effect transistors. Adv. Mater. 23, 523–526 (2011)

    Article  CAS  PubMed  Google Scholar 

  83. Xie, H., Alves, H., Morpurgo, A.F.: Quantitative analysis of density-dependent transport in tetramethyltetraselenafulvalene single-crystal transistors: Intrinsic properties and trapping. Phys. Rev. B 80, 245305 (7 pages) (2009)

    Google Scholar 

  84. Sakanoue, T., Sirringhaus, H.: Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat. Mater. 9, 736–740 (2010)

    Article  CAS  PubMed  Google Scholar 

  85. Minder, N.A., Ono, S., Chen, Z., Facchetti, A., Morpurgo, A.F.: Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012)

    Article  CAS  PubMed  Google Scholar 

  86. Cox, P.A.: The Electronic Structure and Chemistry of Solids. Oxford University Press, New York. Chap.7 (1987)

    Google Scholar 

  87. Bylander, E.G.: Surface effects on the low-energy cathodoluminescence of zinc oxide. J. Appl. Phys. 49, 1188–1195 (1978)

    Article  CAS  Google Scholar 

  88. Izaki, M., Chizaki, R., Saito, T., Murata, K., Sasano, J., Shinagawa, T.: Hybrid ZnO/phthalocyanine photovoltaic device with highly resistive ZnO intermediate layer. ACS Appl. Mater. Interfaces 5, 9386–9395 (2013)

    Article  CAS  PubMed  Google Scholar 

  89. Shockley, W., Read, W.T., Jr.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  CAS  Google Scholar 

  90. Bethke, S., Pan, H., Wessels, B.W.: Luminescence of heteroepitaxial zinc oxide. Appl. Phys. Lett. 52, 138–140 (1988)

    Article  CAS  Google Scholar 

  91. Kim, D., Terashita, T., Tanaka, I., Nakayama, M.: Photoluminescence properties of ZnO thin films grown by electrochemical deposition. Jpn. J. Appl. Phys. 42, L953–L937 (2003)

    Article  CAS  Google Scholar 

  92. Jang, J.I., Wolfe, J.P.: Auger recombination and biexcitons in Cu2O: A case for dark excitonic matter. Phys. Rev. B 74, 045211 (16 pages) (2006)

    Google Scholar 

  93. Snoke, D.W., Shields, A.J., Cardona, M.: Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O. Phys. Rev. B 45, 11693–11697 (1992)

    Article  CAS  Google Scholar 

  94. Petroff, Y., Yu, P.Y., Shen, Y.R.: Study of photoluminescence in Cu2O. Phys. Rev. B 12, 2488–2495 (1975)

    Article  CAS  Google Scholar 

  95. Yang, J.P., Bussolotti, F., Kera, S., Ueno, N.: Origin and role of gap states in organic semiconductor studied by UPS: as the nature of organic molecular crystals. J. Phys. D: Appl. Phys. 50, 423002 (2017)

    Article  Google Scholar 

  96. Ishii, H., Kudo, K., Nakayama, T., Ueno, N.: Electronic Processes in Organic Electronics. Springer Japan, Tokyo (2015)

    Book  Google Scholar 

  97. Bussolotti, F., Yang, J., Yamaguchi, T., Yonezawa, K., Sato, K., Matsunami, M., Tanaka, K., Nakayama, Y., Ishii, H., Ueno, N., Kera, S.: Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors. Nature Commun. 8, 173 (7 pages) (2017)

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Kubo, Y. Shinmura, C. Ohashi, and N. Ishiyama for their important work on doping and Professors M. Izaki and H. Naito for their helpful discussions. The authors also appreciate A. Adachi and S. Ohashi of Epitech Inc. for their help in the design and construction of the built-in chamber globe box systems with extremely slow deposition apparatuses. Funding from CREST/JST and NEDO is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Hiramoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hiramoto, M. (2021). Parts-Per-Million-Level Doping Effects and Organic Solar Cells Having Doping-Based Junctions. In: Hiramoto, M., Izawa, S. (eds) Organic Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9113-6_9

Download citation

Publish with us

Policies and ethics