Skip to main content

Percolation Toward Lateral Junctions

  • Chapter
  • First Online:
Organic Solar Cells
  • 781 Accesses

Abstract

In the field of organic solar cells, nanostructure fabrication with electron and hole transport routes in the blended donor (D) and acceptor (A) molecules based on percolation remains a problem. The author believes that to overcome this difficulty, novel methods for the fabrication of intentionally designed nanostructures that do not rely on random luck assisted by percolation should be introduced. Based on this consideration, we have proposed several new principles of donor/acceptor junctions that can act as alternative blended junctions. First, we proposed a vertical superlattice junction (vertical alternating multilayered junction), by utilizing cross sections of vacuum-deposited multilayers with angstrom-order precision. We confirmed that the vertical superlattice has the ability to collect both excitons and carriers, although the area of the vertical superlattice junction is very small. We also proposed an advanced lateral multilayered junction using high-mobility organic semiconductors. An essential point is that the photogenerated holes and electrons are laterally transported and extracted to the respective electrodes. A total of 93% of the photogenerated electrons and holes were laterally collected over a millimeter-scale distance of 0.14 mm. The exciton-collection efficiency reached 75% in the lateral junction with a layer thickness of 10 nm. The lateral junctions have the ability to collect both excitons and carriers, have sufficient cell area, and can be regarded as an alternative blended junction for organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiramoto, M., Fujiwara, H., Yokoyama, M.: Three-layered organic solar cell with a photoactive interlayer of codeposited pigment. Appl. Phys. Lett. 58, 1062–1064 (1991)

    Article  CAS  Google Scholar 

  2. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Article  CAS  Google Scholar 

  3. Maennig, B.,Drechsel, J., Gebeyehu, D., Simon, P., Kozlowski, F., Werner, A., Li, F., Grundmann, S., Sonntag, S., Koch, M., Leo, K., Pfeiffer, M., Hoppe, H., Meissner, D., Sariciftci, N. S.,Riedel, I., Dyakonov, V., Parisi, J.: Organic p-i-n solar cells. Appl. Phys. A,79, 1–14 (2004)

    Google Scholar 

  4. Riede, M., Uhrich, C., Widmer, J., Timmreck, R., Wynands, D., Schwartz, G., Gnehr, W.M., Hildebrandt, D., Weiss, A., Hwang, J., Sundarraj, S., Erk, P., Pfeiffer, M., Leo, K.: Efficient organic tandem solar cells based on small molecules. Adv. Funct. Mater. 21, 3019–3028 (2011)

    Article  CAS  Google Scholar 

  5. Li, W.N., Ye, L., Li, S. S., Yao, H. F., Ade, H., Hou, J. H.:A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor. Adv. Mater.,30, 1707170(8 pages) (2018)

    Google Scholar 

  6. Osaka, I., Saito, M., Koganezawa, T., Takimiya, K.: Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014)

    Article  CAS  Google Scholar 

  7. Kaji, T., Zhang, M., Nakao, S., Iketaki, K., Yokoyama, K., Tang, C.W., Hiramoto, M.: Co-evaporant induced crystalline donor:acceptor blends in organic solar cells. Adv. Mater. 23, 3320–3325 (2011)

    Article  CAS  Google Scholar 

  8. Hiramoto, M.: Organic solar cells incorporating a p-i-n junction and a p-n homojunction. In: Sun, S.-S., Sariciftci, N.S. (eds.) Organic photovoltaics, Mechanisms, Materials and Devices, pp. 239–270. CRC Press, New York (2005)

    Google Scholar 

  9. Spanggaard, H., Krebs, F.C.: A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 83, 125–146 (2004)

    Article  CAS  Google Scholar 

  10. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Article  CAS  Google Scholar 

  11. Walzer, K., Maennig, B., Pfeiffer, M., Leo, K.: Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007)

    Article  CAS  Google Scholar 

  12. Sakai, K., Hiramoto, M.: Efficient organic p-i-n solar cells with very thick co-deposited i-layer consisting of highly purified organic semiconductors. Mol. Cryst. Liq. Cryst. 491, 284–289 (2008)

    Article  CAS  Google Scholar 

  13. Armin, A., Subbiah, J., Stolterfoht, M.,Shoaee, S., Xiao, Z., Lu, S., Jones, D. J., Meredith, P.:Reduced recombination in high efficiency molecular nematic liquid crystalline: fullerene solar cells. Adv. Energy Mater., 6, 1600939 (10 pages), (2016)

    Google Scholar 

  14. Jin, Y., Chen, Z., Dong, S., Zheng, N., Ying, L., Jiang, X.F., Liu, F., Huang, F., Cao, Y.: A novelnaphtho[1,2-c:5,6-c′]bis([1,2,5]thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 28, 9811–9818 (2016)

    Article  CAS  Google Scholar 

  15. Suemori, K., Miyata, T., Hiramoto, M., Yokoyama, M.: Enhanced photovoltaic performance in fullerene:phthalocyanine co-deposited films deposited on heated substrate. Jpn. J. Appl. Phys. 43, L1014–L1016 (2004)

    Article  Google Scholar 

  16. Suemori, K., Miyata, T., Yokoyama, M., Hiramoto, M.: Three-layered organic solar cells incorporating nanostructure-optimized phthalocyanine:fullerene co-deposited Interlayer. Appl. Phys. Lett., 86, 063509 (3 pages) (2005)

    Google Scholar 

  17. Suemori, K., Matsumura, Y., Yokoyama, M., Hiramoto, M.: Large Area Organic Solar Cells with Thick and Transparent Protection Layers. Jpn. J. Appl. Phys. 45, L472–L474 (2006)

    Article  CAS  Google Scholar 

  18. Hiramoto, M., Yamaga, T., Danno, M., Suemori, K., Matsumura, Y., Yokoyama,M.:Design of nanostructure for photo-electric conversion by organic vertical superlattice. Appl. Phys. Lett., 88, 213105 (3 pages)(2006)

    Google Scholar 

  19. Kikuchi, M., Takagi, K., Naito, H., Hiramoto, M.: Single crystal organic photovoltaic cells using lateral electron transport. Org. Electron. 41, 118–121 (2017)

    Article  CAS  Google Scholar 

  20. Laudise, R.A., Kloc, Ch., Simpkins, P.G., Siegrist, T.: Physical vapor growth of organic semiconductors. J. Cryst. Growth 187, 449–454 (1998)

    Article  CAS  Google Scholar 

  21. Jayaraman, A., Kaplan, M.L., Schmidt, P.H.: Effect of pressure on the Raman and electronic absorption spectra of naphthalene- and perylenetetracarboxylic dianhydrides. J. Chem. Phys. 82, 1682–1687 (1985)

    Article  CAS  Google Scholar 

  22. Chesterfield, R.J., McKeen, J.C., Newman, C.R., Ewbank, P.C., Filho, D.A.S., Brédas, J.-L., Miller, L.L., Mann, K.R., Frisbie, C.D.: Organic thin film transistors based on N-alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature. J. Phys. Chem. B 108, 19281–19292 (2004)

    Article  CAS  Google Scholar 

  23. Kikuchi, M., Hirota, M., Kunawong, T., Shinmura, Y., Abe, M., Sadamitsu, Y., Moh, A.M., Izawa, S., Izaki, M., Naito, H., Hiramoto, M.: Lateral alternating donor/acceptor multilayered junction for organic solar cells. ACS Appl. Energy Mater. 2, 2087–2093 (2019)

    Article  CAS  Google Scholar 

  24. Yuan, Y.,Giri,G., Ayzner, A. L., Zoombelt, A. P., Mannsfeld, Chen, S. C. B. J., Nordlund, D., Toney, M. F., Huang, J., Bao, Z.,: Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun., 5, 3005–3013 (2014)

    Google Scholar 

  25. Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y.: Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett., 90, 102120(3 pages) (2007)

    Google Scholar 

  26. Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., Hasegawa, T.: Inkjet printing of single-crystal films. Nature 475, 364–367 (2011)

    Article  CAS  Google Scholar 

  27. Haas, S., Takahashi, Y., Takimiya, K., Hasegawa, T.: High-performance dinaphtho-thienothiophene single crystal field-effect transistors. Appl. Phys. Lett.,95, 022111(3 pages) (2009)

    Google Scholar 

  28. Takimiya, K., Shinamura, S., Osaka, I., Miyazaki, E.: Thienoacene-based organic semiconductors. Adv. Mater. 23, 4347–4370 (2011)

    Article  CAS  Google Scholar 

  29. Naito, H., Kanemitsu, Y.: Relations between transient charge transport and the glass-transition temperature in amorphous chalcogenides. Phys. Rev. B 49, 10131–10135 (1994)

    Article  CAS  Google Scholar 

  30. Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Bredas, J.-L.: Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007)

    Article  CAS  Google Scholar 

  31. Lecomber, P.G., Spear, W.E.: Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25, 509–511 (1970)

    Article  CAS  Google Scholar 

  32. Schmidlin, F.W.: Theory of trap-controlled transient photoconduction. Phys. Rev. B 16, 2362–2385 (1977)

    Article  CAS  Google Scholar 

  33. Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E.: Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett., 93, 086602(4 pages) (2004)

    Google Scholar 

  34. Mori, D., Benten, H., Okada, I., Ohkita, H., Ito, S.: Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ. Sci., 7, 2939–2943 (2014)

    Google Scholar 

Download references

Acknowledgements

Funding from the New Energy and Industrial Technology Development Organization (NEDO) is appreciated. Financial support from JSPS, KAKENHI (No. 17H02768) is gratefully acknowledged. The author appreciates A. Adachi and S. Ohashi of EpiTech Co. (Kyoto, Japan) for the design and construction of the movable mask system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Hiramoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hiramoto, M. (2021). Percolation Toward Lateral Junctions. In: Hiramoto, M., Izawa, S. (eds) Organic Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9113-6_3

Download citation

Publish with us

Policies and ethics