Skip to main content

Basic Principles of Modern Organic Solar Cells

  • Chapter
  • First Online:
Organic Solar Cells
  • 1092 Accesses

Abstract

In 2018, solar cells supplied 2% of the global electricity demand. This must be increased over 20%; therefore, organic solar cells with inherent cost-reducing abilities are indispensable. In this chapter, the basic principles of modern organic solar cells are summarized. Exciton, donor/acceptor sensitization, exciton diffusion, blended junction, designed route formation, and \(\pi{-}\pi\) stacking orientation are discussed regarding the photocurrent, while HOMO–LUMO gap tuning and the non-radiative recombination loss are examined regarding the photovoltage. The tandem cells as well as junction fabrication by doping alone are considered for cell design. Historically, blend and tandem strategies have continuously enhanced efficiencies. The efficiency of organic solar cells, which continues to progressively increase, has risen steadily at the rate of 1% per year and has reached 17.3% in 2020. Organic solar cells, with their fascinating advantages, have sufficient potential to engender the next-generation solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Report of IEA (International Energy Agency) PVPS (Photovoltaic power Systems Programme), Trends in Photovoltaic Applications 2019. https://iea-pvps.org/trends_reports/2019-edition/

  2. NREL (National Renewable Energy Lab).: Best Research-Cell Efficiency. https://www.nrel.gov/pv/cell-efficiency.html

  3. Meng, L., Zhang, Y. Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H.-L., Cao, Y., Chen, Y.: Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018)

    Google Scholar 

  4. https://www.taisei.co.jp/about_us/wn/2014/140324_3962.html

  5. Kearns, D., Calvin, M.: Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. J. Chem. Phys. 29, 950–951 (1958)

    Google Scholar 

  6. Ghosh, A.K., Morel, D.L., Feng, T., Shaw, R.F., Rowe, C.A., Jr.: Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells. J. Appl. Phys. 45, 230–236 (1974)

    Google Scholar 

  7. Ghosh, A.K., Feng, T.: Merocyanine organic solar cells. J. Appl. Phys. 49, 5982–5989 (1978)

    Google Scholar 

  8. Chamberlain, G.A.: Organic solar cells: A review. Solar Cells 8, 47–83 (1983) (and references therein)

    Google Scholar 

  9. Wohrle, D., Meissner, D.: Organic solar cells. Adv. Mater. 3, 129–138 (1991) (and references therein)

    Google Scholar 

  10. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Google Scholar 

  11. Hiramoto, M., Fujiwara, H., Yokoyama, M.: Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 58, 1062–1064 (1991)

    Google Scholar 

  12. Hiramoto, M., Fujiwara, H., Yokoyama, M.: p-i-n like behavior in three-layered organic solar cells having c co-deposited interlayer of pigments. J. Appl. Phys. 72, 3781–3787 (1992)

    Google Scholar 

  13. Sariciftci, N.S., Smilowitz, L., Heeger, A.J., Wudl, F.: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 285, 1474–1476 (1992)

    Google Scholar 

  14. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Google Scholar 

  15. Hiramoto, M., Suezaki, M., Yokoyama, M.: Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell. Chem. Lett. 19, 327–330 (1990)

    Google Scholar 

  16. Peumans, P., Yakimov, A., Forrest, S.R.: Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003)

    Google Scholar 

  17. (a) Riede, M., Uhrich, C., Widmer, J., Timmreck, R., Wynands, D., Schwartz, G., Gnehr, W.-M., Hildebrandt, D., Weiss, A., Hwang, J., Sundarraj, S., Erk, P., Pfeiffer, M., Leo, K.: Efficient organic tandem solar cells based on small molecules. Adv. Funct. Mater. 21, 3019–3028 (2011). (b) Schueppel, R., Timmreck, R., Allinger, N., Mueller, T., Furno, M., Uhrich, C., Leo, K., Riede, M.: Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. J. Appl. Phys. 107, 044503 (6 pages) (2010). (c) Heliatek, H.P.: https://www.heliatek.com/en/press/press-releases/details/heliatek-consolidates-its-technology-leadership-by-establishing-a-new-world-record-for-organic-solar-technology-with-a-cell-effi

  18. Hou, J., Inganäs, O., Friend, R., Gao, F.: Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018)

    Google Scholar 

  19. Zhang, H., Yao, H., Hou, J., Zhu, J., Zhang, J., Li, W., Yu, R., Gao, B., Zhang, S., Hou, J.: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 30, 1800613 (7 pages) (2018)

    Google Scholar 

  20. Hiramoto, M., Yamaga, T., Danno, M., Suemori, K., Matsumura, Y., Yokoyama M.: Design of nanostructure for photo-electric conversion by organic vertical superlattice.. Appl. Phys. Lett. 88, 213105 (3 pages) (2006)

    Google Scholar 

  21. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Ti02 films. Nature 353, 737–740 (1991)

    Google Scholar 

  22. Padinger, F., Rittberger, F.R.S., Sariciftci, N.S.: Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003)

    Google Scholar 

  23. Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Google Scholar 

  24. Suemori, K., Miyata, T., Hiramoto, M., Yokoyama, M.: Enhanced photovoltaic performance in fullerene:phthalocyanine co-deposited films deposited on heated substrate. Jpn. J. Appl. Phys. 43, L1014–L1016 (2004)

    Google Scholar 

  25. Kikuchi, M., Hirota, M., Kunawong, T., Shinmura, Y., Abe, M., Sadamitsu, Y., Moh, A.M., Izawa, S., Izaki, M., Naito, H., Hiramoto, M.: Lateral alternating donor/acceptor multilayered junction for organic solar cells. ACS Appl. Energy Mater. 2, 2087–2093 (2019)

    Google Scholar 

  26. Katayama, M., Kaji, T., Nakao, S., Hiramoto, M.: Ultra-thick organic pigment layer up to 10 m activated by crystallization in organic photovoltaic cells. Frontiers Energy Res Sect Solar Energy 8, 1–12 (2019)

    Google Scholar 

  27. Kaji, T., Zhang, M., Nakao, S., Iketaki, K., Yokoyama, K., Tang, C.W., Hiramoto, M.: Co-evaporant induced crystalline donor:acceptor blends in organic solar cells. Adv. Mater. 23, 3320–3325 (2011)

    Google Scholar 

  28. Hiramoto, M., Kubo, M., Shinmura, Y., Ishiyama, N., Kaji, T., Sakai, K., Ohno, T., Izaki, M.: Bandgap science for organic solar cells. Electronics 3, 351–380 (2014)

    Google Scholar 

  29. Sakai, K., Hiramoto, M.: Efficient organic p-i-n solar cells having very thick codeposited i-layer consisting of highly purified organic semiconductors. Mol. Cryst. Liq. Cryst. 491, 284–289 (2008)

    Google Scholar 

  30. Matsuo, Y., Sato, Y., Niinomi, T., Soga, I., Tanaka, H., Nakamura, E.: Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J. Am. Chem. Soc. 131, 16048–16050 (2009)

    Google Scholar 

  31. Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.S., Ree, M.: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat. Mater. 5, 197–203 (2006)

    Google Scholar 

  32. Osaka, I., Saito, M., Koganezawa, T., Takimiya, K.: Thiophene–thiazolothiazole copolymers: Significant impact of side chain composition on backbone orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014)

    Google Scholar 

  33. Scharber, M.C., MĂ¼hlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.J.: Design rules for donors in bulk-heterojunction solar cells-Towards 10 % energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)

    Google Scholar 

  34. Matsuo, Y.: Design concept for high-LUMO-level fullerene electron-acceptors for organic solar cells. Chem. Lett. 41, 754–759 (2012)

    Google Scholar 

  35. Kawashima, K., Tamai, Y., Ohkita, H., Osaka, I., Takimiya, K.: High-efficiency polymer solar cells with small photon energy loss. Nat. Commun. 6, 10085 (9 pages) (2015)

    Google Scholar 

  36. Ran, N.A., Love, J.A., Takacs, C.J., Sadhanala, A., Beavers, J.K., Collins, S.D., Huang, Y., Wang, M., Friend, R.H., Bazan, G.C., Nguyen, T.Q.: Harvesting the full potential of photons with organic solar cells. Adv. Mater. 28, 1482–1488 (2016)

    Google Scholar 

  37. Benduhn, J., Tvingstedt, K., Piersimoni, F., Ullbrich, S., Fan, Y., Tropiano, M., McGarry, K.A., Zeika, O., Riede, M.K., Douglas, C.J., Barlow, S., Marder, S.R., Neher, D., Spoltore, D., Vandewal, K.: Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017)

    Google Scholar 

  38. Nalwa, K. S., Kodali, H. K., Ganapathysubramanian, B., Chaudhary S.: Dependence of recombination mechanisms and strength on processing conditions in polymer solar cells. Appl. Phys. Lett. 99, 263301 (4 pages) (2011).

    Google Scholar 

  39. Gorenflot, J., Heiber, M. C., Baumann, A., Lorrmann, J., Gunz, M., Kämpgen, A., Dyakonov, V., Deibel, C.: Nongeminate recombination in neat P3HT and P3HT: PCBM blend films. J. Appl. Phys. 115, 144502 (9 pages) (2014)

    Google Scholar 

  40. Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev. B 83, 115209 (13 pages) (2011)

    Google Scholar 

  41. Shintaku, N., Hiramoto, M., Izawa, S.: Effect of trap-assisted recombination on open-circuit voltage loss in phthalocyanine/fullerene solar cells. Org. Electron. 55, 69–74 (2018)

    Google Scholar 

  42. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Google Scholar 

  43. Li, W., Hendriks, K. H., Furlan, A., Wienk, M. M., Janssen, R.A.: High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc., 137, 2231–2234 (2015).

    Google Scholar 

  44. Queisser, H.J.: Detailed balance limit for solar cell efficiency. Mater. Sci. Eng. B 159–160, 322–328 (2009)

    Google Scholar 

  45. Izawa, S., Shintaku, N., Kikuchi, M., Hiramoto, M.: Importance of interfacial crystallinity to reduce open-circuit voltage loss in organic solar cells. Appl. Phys Lett. 115, 153301 (4 pages) (2019).

    Google Scholar 

  46. Yakimov, A., Forrest, S.R.: High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl. Phys. Lett. 80, 1667–1669 (2002)

    Google Scholar 

  47. Ameri, T., Dennler, G., Lungenschmied, C., Brabec, C.J.: Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009) (and references therein)

    Google Scholar 

  48. You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C., Gao, J., Li, G., Yang, Y.: A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (10 pages), (2012).

    Google Scholar 

  49. Chen, C., Chang, W., Yoshimura, K., Ohya, K., You, J., Gao, J., Hong, Z., Yang, Y.: An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 5670–5677 (2014)

    Google Scholar 

  50. Ishiyama, N., Kubo, M., Kaji, T., Hiramoto, M.: Tandem organic solar cells formed in co-deposited films by doping. Org. Electron. 14, 1793–1796 (2013)

    Google Scholar 

  51. https://forschungsinfo.tu-dresden.de/detail/professur/349

  52. LĂ¼ssem, B., Riede, M., Leo, K.: Doping of organic semiconductors. Phys. Stat. Solidi a 210, 9–43 (2013)

    Google Scholar 

  53. Hiramoto, M., Kikuchi, M., Izawa, S.: Parts-per-million-level doping effects in organic semiconductor films and organic single crystals. Adv. Mater. 30, 1801236 (15 pages) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Hiramoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hiramoto, M. (2021). Basic Principles of Modern Organic Solar Cells. In: Hiramoto, M., Izawa, S. (eds) Organic Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9113-6_1

Download citation

Publish with us

Policies and ethics