Skip to main content

An Efficient Probabilistic Back-Analysis Method for Braced Excavations

  • Chapter
  • First Online:
Practice of Bayesian Probability Theory in Geotechnical Engineering

Abstract

In this chapter, we present an efficient Bayesian back-analysis procedure for braced excavations using wall deflection data at multiple points. A response surface method is adopted to efficiently evaluate the wall response. Deflection data for 49 wall sections from 11 case histories are collected to characterize the model error of the finite element method for evaluating the deflections at various points. A braced excavation project in Hangzhou, China is chosen to illustrate the effectiveness of the proposed procedure. The results indicate that the soil parameters could be updated more significantly for the updating that uses the deflection data at multiple points than that only uses the maximum deflection data. The predicted deflections from the updated parameters agree fairly well with the field observations. The main significance of the proposed procedure is that it improves the updating efficiency of the soil parameters without adding monitoring effort compared with the traditional method that uses the maximum deflection data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J 36(4):612–24

    Article  Google Scholar 

  2. Li DQ, Qi XH, Phoon KK, Zhang LM, Zhou CB (2014) Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes. Struct Saf 49:45–55

    Article  Google Scholar 

  3. Zhang J, Huang HW, Zhang LM, Zhu HH, Shi B (2014) Probabilistic prediction of rainfall-induced slope failure using a mechanics-based model. Eng Geol 168:129–40

    Article  Google Scholar 

  4. Tang WH, Stark TD, Angulo M (1999) Reliability in back analysis of slope failures. Soils Found 39(5):73–80

    Article  Google Scholar 

  5. Cao Z, Wang Y (2014) Bayesian model comparison and characterization of undrained shear strength. J Geotech Geoenviron Eng 140(6):04014018

    Article  Google Scholar 

  6. Ching J, Phoon K-K, Chen Y-C (2010) Reducing shear strength uncertainties in clays by multivariate correlations. Can Geotech J 47(1):16–33

    Article  Google Scholar 

  7. Ching J, Chen J, Yeh J, Phoon K (2012) Updating uncertainties in friction angles of clean sands. J Geotech Geoenviron Eng 138(2):217–29

    Article  Google Scholar 

  8. Wang Y, Au S-K, Cao Z (2010) Bayesian approach for probabilistic characterization of sand friction angles. Eng Geol 114(3–4):354–63

    Article  Google Scholar 

  9. Finno R, Calvello M (2005) Supported excavations: observational method and inverse modeling. J Geotech Geoenviron Eng 131(7):826–36

    Article  Google Scholar 

  10. Hashash YMA, Levasseur S, Osouli A, Finno R, Malecot Y (2010) Comparison of two inverse analysis techniques for learning deep excavation response. Comput Geotech 37(3):323–33

    Article  Google Scholar 

  11. Juang CH, Luo Z, Atamturktur S, Huang HW (2013) Bayesian updating of soil parameters for braced excavations using field observations. J Geotech Geoenviron Eng 139(3):395–406

    Article  Google Scholar 

  12. Hashash Y, Marulanda C, Ghaboussi J, Jung S (2006) Novel approach to integration of numerical modeling and field observations for deep excavations. J Geotech Geoenviron Eng 132(8):1019–31

    Article  Google Scholar 

  13. Wang L, Luo Z, Xiao J, Juang CH (2014) Probabilistic inverse analysis of excavation-induced wall and ground responses for assessing damage potential of adjacent buildings. Geotech Geol Eng 32(2):273–85

    Article  Google Scholar 

  14. Huang J, Kelly R, Li D, Zhou C, Sloan S (2016) Updating reliability of single piles and pile groups by load tests. Comput Geotech 73:221–30

    Article  Google Scholar 

  15. Wang L, Ravichandran N, Juang CH (2012) Bayesian updating of KJHH model for prediction of maximum ground settlement in braced excavations using centrifuge data. Comput Geotech 44:1–8

    Article  Google Scholar 

  16. Zhang LL, Zhang J, Zhang LM, Tang WH (2010) Back analysis of slope failure with Markov chain Monte Carlo simulation. Comput Geotech 37(7–8):905–12

    Article  Google Scholar 

  17. Park JH, Kim D, Chung CK (2012) Implementation of Bayesian theory on LRFD of axially loaded driven piles. Comput Geotech 42:73–80

    Article  Google Scholar 

  18. Zhang J, Wilson T, Zhang LM (2010) Efficient probabilistic back-analysis of slope stability model parameters. J Geotech Geoenviron Eng 136(1):99–109

    Article  Google Scholar 

  19. Kung GT, Juang CH, Hsiao EC, Hashash YM (2007) Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. J Geotech Geoenviron Eng 133(6):731–47

    Article  Google Scholar 

  20. Zhang J, Zhang LM, Wilson T (2009) Bayesian framework for characterizing geotechnical model uncertainty. J Geotech Geoenviron Eng 135(7):932–40

    Article  Google Scholar 

  21. Zhang DM, Phoon KK, Huang HW, Hu QF (2015) Characterization of model uncertainty for cantilever deflections in undrained clay. J Geotech Geoenviron Eng 141(1):04014088

    Article  Google Scholar 

  22. Feng X, Jimenez R (2014) Bayesian prediction of elastic modulus of intact rocks using their uniaxial compressive strength. Eng Geol 173:32–40

    Article  Google Scholar 

  23. Phoon KK, Santoso A, Quek ST (2010) Probabilistic analysis of soil-water characteristic curves. J Geotech Geoenviron Eng 136(3):445–55

    Article  Google Scholar 

  24. Li DQ, Jiang SH, Cao ZJ, Zhou W, Zhou CB, Zhang LM (2015) A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng Geol 187:60–72

    Article  Google Scholar 

  25. Li DQ, Zheng D, Cao ZJ, Tang XS, Phoon KK (2016) Response surface methods for slope reliability analysis: Review and comparison. Eng Geol 203:3–14

    Article  Google Scholar 

  26. Mollon G, Dias D, Soubra A (2009) Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology. J Geotech Geoenviron Eng 135(9):1314–25

    Article  Google Scholar 

  27. Tan O, Zaimoglu AS, Hinislioglu S, Altun S (2005) Taguchi approach for optimization of the bleeding on cement-based grouts. Tunn Undergr Space Technol 20(2):167–73

    Article  Google Scholar 

  28. Ledesma A, Gens A, Alonso EE (1996) Estimation of parameters in geotechnical backanalysis—I maximum likelihood approach. Comput Geotech 18(1):1–27

    Article  MATH  Google Scholar 

  29. Likitlersuang S, Surarak C, Wanatowski D, Oh E, Balasubramaniam A (2013) Finite element analysis of a deep excavation: a case study from the Bangkok MRT. Soils Found 53(5):756–73

    Article  Google Scholar 

  30. Whittle AJ, Corral G, Jen LC, Rawnsley RP (2015) Prediction and performance of deep excavations for Courthouse Station, Boston. J Geotech Geoenviron Eng 141(4):04014123

    Article  Google Scholar 

  31. Hsiung B-CB (2009) A case study on the behaviour of a deep excavation in sand. Comput Geotech 36(4):665–75

    Google Scholar 

  32. Lehane B, Zaremba N (2007) The performance of steel struts in a braced excavation in Perth CBD. Aust Geomech J 42(3):121–32

    Google Scholar 

  33. Lu Y, Tan Y, Peng F, Liao S (2012) FE simulation of deep excavations in sensitive soft clays. In: Hryciw RD, Athanasopoulos-Zekkos A, Yesiller N (eds) GeoCongress 2012: state of the art and practice in geotechnical engineering. Oakland, pp 750–9

    Google Scholar 

  34. Liu X-L, Ma Y, Guo G-Q, Tao T, Zhou H (2012) Applicability of PLAXIS2D used for numerical simulation in foundation pit excavations. Periodic Ocean Univ China 42(4):19–25 (in Chinese)

    Google Scholar 

  35. Tan Y, Wei B (2012) Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in shanghai soft clay. J Geotech Geoenviron Eng 138(1):69–88

    Article  Google Scholar 

  36. Wang ZW, Ng CWW, Liu GB (2005) Characteristics of wall deflections and ground surface settlements in Shanghai. Can Geotech J 42(5):1243–54

    Article  Google Scholar 

  37. Teo PL, Wong KS (2012) Application of the Hardening Soil model in deep excavation analysis. IES J Part A Civil Struct Eng 5(3):152–65

    Article  Google Scholar 

  38. Corral G, Whittle AJ (2010) Re-analysis of deep excavation collapse using a generalized effective stress soil model. In: Finno R, Hashash YMA, Arduino P (eds) 2010 Earth Retention Conference. American Society of Civil Engineers, Bellevue, Washington, DC

    Google Scholar 

  39. Lim A, Ou C-Y, Hsieh P-G (2010) Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. J GeoEng 5(1):9–20

    Google Scholar 

  40. Calvello M (2002) Inverse analysis of a supported excavation through Chicago glacial clays. Northwestern University, Evanston

    Google Scholar 

  41. Ran L, Ye XW, Zhu HH (2011) Long-term monitoring and safety evaluation of a metro station during deep excavation. Procedia Eng 14:785–92

    Article  Google Scholar 

  42. Zhu HH, Ye XW, Ran L (2011) Reliability analysis of deep excavation based on field monitoring data. J Railw Eng Soc 28(9):7–11 (in Chinese)

    Google Scholar 

  43. Brinkgreve R (2002) PLAXIS (version 8) user’s manual. Delft University of Technology and PLAXIS BV, Netherlands

    Google Scholar 

  44. Chowdhury SS, Deb K, Sengupta A (2013) Estimation of design parameters for braced excavation: numerical study. Int J Geomech 13(3):234–47

    Article  Google Scholar 

  45. Orazalin ZY, Whittle AJ, Olsen MB (2015) Three-dimensional analyses of excavation support system for the stata center basement on the MIT Campus. J Geotech Geoenviron Eng 141(7):05015001

    Article  Google Scholar 

  46. Atkinson J (2007) The mechanics of soils and foundations. Taylor & Francis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Tongji University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, WH., Yin, ZY., Yuen, KV. (2021). An Efficient Probabilistic Back-Analysis Method for Braced Excavations . In: Practice of Bayesian Probability Theory in Geotechnical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9105-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9105-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9104-4

  • Online ISBN: 978-981-15-9105-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics