Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 234 Accesses

Abstract

In the year 1959, professor Richard Feynman prognosticated the propitious future of nanomaterials with his famous speech, saying, “There's Plenty of Room at the Bottom. I can't see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a small scale, we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman, R.: There’s Plenty of Room at the Bottom. Annual meeting of American Physical Society, California Institute of Technology (1959)

    Google Scholar 

  2. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    Article  CAS  Google Scholar 

  3. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  4. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Google Scholar 

  5. Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Article  CAS  Google Scholar 

  6. Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., Article ID 237689 (2012)

    Google Scholar 

  7. Taghioskoui, M.: Trends in graphene research, Materials today, 2009, 12 (10)

    Google Scholar 

  8. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  9. Ren, W., Cheng, H.M.: The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)

    Article  CAS  Google Scholar 

  10. Zhang, Y., Wu, S., Wen, Y.H., Zhu, Z.: Surface-passivation-induced metallic and magnetic properties of ZnO graphitic sheet. Phys. Lett. 96, 223113 (2010)

    Google Scholar 

  11. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  Google Scholar 

  12. Loh, K.P., Bao, Q., Anga, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)

    Article  CAS  Google Scholar 

  13. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)

    Article  CAS  Google Scholar 

  14. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  CAS  Google Scholar 

  15. Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res 1, 273–291 (2008)

    Article  CAS  Google Scholar 

  16. Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10(11), 4285–4294 (2010)

    Article  CAS  Google Scholar 

  17. Giannazzo, F., Raineri, V., Rimini, E.: Transport properties of graphene with nanoscale lateral resolution. Scann. Probe Microscopy Nanosci. Nanotechnol. 2, 247–258 (2011)

    Article  Google Scholar 

  18. Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, Article 58 (2015)

    Google Scholar 

  19. https://www.graphene-info.com/news

  20. https://investingnews.com/daily/techinvesting/nanoscienceinvesting/grapheneinvesting/graphene-outlook/

  21. Kesong, Hu., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene-polymer nanocomposites for structuraland functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)

    Article  CAS  Google Scholar 

  22. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010)

    Article  CAS  Google Scholar 

  23. Novoselov, K.S., Jiang, Z., Zhang, Y., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)

    Article  CAS  Google Scholar 

  24. Leenaerts, O., et al.: Appl. Phys. Lett., 93 (2008)

    Google Scholar 

  25. Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachhev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Castro Meto, A.H., Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)

    Article  CAS  Google Scholar 

  26. El-Kady, M.F., Kaner, R.B.: Scalable fabrication of high-power graphenemicro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475/1–1475 (2013)

    Google Scholar 

  27. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Google Scholar 

  28. Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A.: Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012)

    Article  CAS  Google Scholar 

  29. Hu, K., Gupta, M.K., Kulkarni, D.D., Tsukruk, V.V.: Ultra-robustgraphene oxide-silk fibroin nanocomposite membranes. Adv. Mater. 25, 2301–2307 (2013)

    Article  CAS  Google Scholar 

  30. Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-basedwireless bacteria detection on tooth enamel. Nat. Commun. 3, 763/1–763 (2012)

    Google Scholar 

  31. Guo, W., Cheng, C., Wu, Y., Jiang, Y., Gao, J., Li, D., Jiang, L.: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25, 6064–6068 (2013)

    Article  CAS  Google Scholar 

  32. Shahil, K.M.F., Balandin, A.A.: Thermal properties of graphene and mul-tilayer graphene: applications in thermal interface materials. Solid State Commun 152, 1331–1340 (2012)

    Article  CAS  Google Scholar 

  33. Oliveira, M., Machado, A.V.: Preparation of polymer-based nanocomposites by different routes. In: Wang, X. (ed.) Nanocomposites: Synthesis, Characterization and Applications, p. 21. NOVA Publishers

    Google Scholar 

  34. Judeinstein, P., Sanchez, C.: Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6, 511–525 (1996)

    Article  CAS  Google Scholar 

  35. Rong, M.Z., Zhang, M.Q., Zheng, Y.X., Zeng, H.M., Friedrich, K.: Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42, 3301–3304 (2001)

    Article  CAS  Google Scholar 

  36. Xu, C., Ohno, K., Ladmiral, V., Composto, R.J.: Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49, 3568–3577 (2008)

    Article  CAS  Google Scholar 

  37. Liu, X., Wu, Q.: PP/clay nanocomposites prepared by grafting-melt Intercalation. Polymer 42, 10013–10019 (2001)

    Article  CAS  Google Scholar 

  38. Akpan, E.I., Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019)

    Google Scholar 

  39. Yang, F., Ou, Y.,Yu, Z.: Polyamide 6/silica nanocomposites prepared by in situ polymerization. State Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China (1998)

    Google Scholar 

  40. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28(1–2), 1–63 (2000)

    Article  Google Scholar 

  41. Reddy, R.J.: Preparation, characterization and properties of injection molded graphene nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USA (2010)

    Google Scholar 

  42. Ravichandran, K., Praseetha, P.K., Arun, T., Gobalakrishnan, S.: Synthesis of nanocomposites. In: Synthesis of Inorganic Nanomaterials. Elsevier (2018)

    Google Scholar 

  43. Fawaz, J., Mittal, V.: Synthesis of polymer nanocomposites: review of various techniques. In: Mittal, V. (ed.) Synthesis Techniques for Polymer Nanocomposites. Wiley (2015)

    Google Scholar 

  44. Beyer, G.: Nano composites: a new class of flame retardants for polymers. Plastics Additives Compound., 22–28 (2002)

    Google Scholar 

  45. Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay-polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites. Elsevier (2017)

    Google Scholar 

  46. Verma, D., Goh, K.L.: Functionalized graphene-based nanocomposites for energy applications. In: Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier (2019)

    Google Scholar 

  47. Rath, T., Li, Y.: Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: effect of nanoplatelet loading on morphology and mechanical properties. Composites: Part A 42, 1995–2002 (2011)

    Google Scholar 

  48. Haghnegahdar, M., Naderi, G.,Ghoreishy, M.H.R.: Electrical and thermal properties of thermoplastic elastomer nanocomposite based on polypropylene/ethylene propylene diene monomer/graphene. Soft Mater. (2016)

    Google Scholar 

  49. Tarawneh, M.A., Yu, L.J., Tarawni, M.A., Ahmad, S.H., Al-Banawi1, O., Batiha, M.A.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015)

    Google Scholar 

  50. Amin, M.: Methods for preparation of nano-composites for outdoor insulation applications. Rev. Adv. Mater. Sci. 34, 173–184 (2013)

    CAS  Google Scholar 

  51. Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)

    Article  CAS  Google Scholar 

  52. Huan, G., Che, S., Tang, S., Gao, J.: A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135, 938–947 (2012)

    Article  CAS  Google Scholar 

  53. Kuila, T., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Poly. Test. 31, 282–289 (2012)

    Google Scholar 

  54. Nawaz, K., Khan, U., Ul-Haq, N., May, P., O’Neill, A., Coleman, J.N.: Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50, 4489–4494 (2012)

    Article  CAS  Google Scholar 

  55. Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C (2015)

    Google Scholar 

  56. Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2, 992–1057 (2009)

    Article  CAS  Google Scholar 

  57. Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced highdensity polyethylene. Appl Polym Sci J 91, 2781 (2004)

    Article  CAS  Google Scholar 

  58. Lianga, J., Wanga, Y., Huanga, Y., Maa, Y., Liua, Z., Caib, J., Zhangb, C., Gaob, H., Chena, Y.: Electromagnetic interference shielding of graphene/epoxy composite. Carb J 47, 922 (2009)

    Article  CAS  Google Scholar 

  59. Park, S., Rouff, S.: Chemical methods for the production of graphenes. Nat Nanotech J 4, 217 (2009)

    Article  CAS  Google Scholar 

  60. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)

    Article  CAS  Google Scholar 

  61. Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra, T.A., Rosłaniec, Z.: Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos. Sci. Technol. (2015)

    Google Scholar 

  62. Wang, X., Yuan, Hu., Song, L., Yang, H., Xinga, W., Hongdian, Lu.: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222 (2011)

    Article  CAS  Google Scholar 

  63. Backes, C., Higgins, T.M., Kelly, A., Boland, C., Harvey, A., Hanlon, D., et al.: Chem. Mater. 29, 243–255 (2017)

    Article  CAS  Google Scholar 

  64. Chen, X., Dobson, J.F., Raston, C.L.: Chem. Commun. 48, 3703 (2012)

    Article  CAS  Google Scholar 

  65. Wengeler, R., Nirschl, H.: J. Colloid Interface Sci. 306, 262–273 (2007)

    Article  CAS  Google Scholar 

  66. Yuan, B., Bao, C., Qian, X., Jiang, S., Wen, P.,Xing, W., Song, L., Liew, K.M., Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143−1149 (2014)

    Google Scholar 

  67. Tayebia, M., Ahmad Ramazani, S., Hamed Mosaviana, M.T., Tayyebi, A.: LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties. Polym. Adv. Technol. 26, 1083–1090 (2015)

    Google Scholar 

  68. Kim, H., Miura, Y., Macosko, C.W.: Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)

    Article  CAS  Google Scholar 

  69. Liu, M., Papageorgiou, D.G., Li, S., Lin, K., Kinloch, I.A., Young, R.J.: Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Compos. A Appl. Sci. Manuf. 110, 84–92 (2018)

    Article  CAS  Google Scholar 

  70. Tarawneh, M., Yu, L.-J., Al-Tarawni, A., Ahmad, M., Al-Banawi, S., Batiha, M.O.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015)

    Google Scholar 

  71. Park, N.H., Kim, D.H., Kim, K.Y., Lim, D.Y., Ham, H.: Electrical properties of novel polyolefin based thermoplastic elastomer and graphene nanocomposites. Fibers Polym. 14(12), 2117–2121 (2013)

    Article  CAS  Google Scholar 

  72. Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4(1), 157–166 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, A., Dasgupta, P., Basak, S. (2020). Preparation of Graphene Based Nanocomposite Based on TPE. In: Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9085-6_3

Download citation

Publish with us

Policies and ethics