Skip to main content

Yielding, Fatigue, and Creep Response of Metal Foams

  • Chapter
  • First Online:
An Insight Into Metal Based Foams

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 145))

  • 392 Accesses

Abstract

In this chapter, yielding, fatigue, and creep are introduced and fundamentally described for metal foams. Metallic foams deforms differently from solid metals. This chapter highlights and describes yielding, fatigue, and creep behavior of metallic foams. The difference between yielding and plastic response of metal foams and the base metal is explained. Similarly, fatigue response of metallic foam is explained using constitutive laws placing emphasis on strength degradability under cycling loading. The chapter also addresses the creep response of metal foams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banhart, J. (Ed.). (1999). Metal foams and porous metal structures. Verl: MIT Publ.

    Google Scholar 

  2. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams: A design guide.

    Google Scholar 

  3. Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.

    Article  CAS  Google Scholar 

  4. Deshpande, V. S., & Fleck, N. A. (1999). Multi-axial yield of aluminium alloy foam,. 8.

    Google Scholar 

  5. Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6–7), 1253–1283.

    Article  CAS  Google Scholar 

  6. Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press.

    Google Scholar 

  7. Gioux, G., McCormack, T. M., & Gibson, L. J. (2000). Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 42(6), 1097–1117.

    Article  Google Scholar 

  8. Miller, R. E. (2000). A continuum plasticity model for the constitutive and indentation behavior of foamed metals. International Journal of Mechanical Sciences, 42(4), 729–754.

    Article  Google Scholar 

  9. Collins, J. A. (1980). Failure of materials in mechanical design. New York: Wiley.

    Google Scholar 

  10. Khan, A. S., & Huang, S. (1995). Continuum theory of plasticity. New York: Wiley.

    Google Scholar 

  11. Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2016). Technical overview of aluminum alloy foam, 19.

    Google Scholar 

  12. Motz, C., & Pippan, R. (2001). Deformation behaviour of closed-cell aluminium foams in tension. Acta Materialia, 49(13), 2463–2470.

    Article  CAS  Google Scholar 

  13. Peroni, L., Avalle, M., & Peroni, M. (2008). The mechanical behaviour of aluminium foam structures in different loading conditions. International Journal of Impact Engineering, 35(7), 644–658.

    Article  Google Scholar 

  14. Rajak, D. K., Mahajan, N. N., & Emanoil, L. (2019). Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. Journal of Alloys and Compounds, 775, 675–689.

    Article  CAS  Google Scholar 

  15. Rajak, D. K., Kumaraswamidhas, L. A., Das, S., & Senthil Kumaran, S. (2016). Characterization and analysis of compression load behavior of aluminium alloy foam under the diverse strain rate. Journal of Alloys and Compounds, 656, 218–225.

    Article  CAS  Google Scholar 

  16. Zettl, B., Mayer, H., & Stanzl-Tschegg, S. E. (2001). Fatigue properties of Al-1 Mg-0.6Si foam at low and ultrasonic frequencies. International Journal of Fatigue, 23, 565–573.

    Article  CAS  Google Scholar 

  17. Ashby, M. F., & Jones, D. R. H. (1997). Engineering materials, 1 (2nd ed.). Oxford: Butterworth-Heinemann.

    Google Scholar 

  18. Sugimura, Y., Rabiei, A., Evans, A. G., Harte, A. M., & Fleck, N. A. (1999). Compression fatigue of a cellular Al alloy. Materials Science and Engineering A, 269(1–2), 38–48.

    Article  Google Scholar 

  19. Vendra, L., Neville, B., & Rabiei, A. (2009). Fatigue in aluminum–steel and steel–steel composite foams. Materials Science and Engineering A, 517(1–2), 146–153.

    Article  Google Scholar 

  20. Fleck, N. A., Kang, K. J., & Ashby, M. F. (1994). Overview no. 112: The cyclic properties of engineering materials. Acta Metallurgica et Materialia, 42(2), 365–381.

    Google Scholar 

  21. Fuchs, H. O., & Stephen, R. I. (1980). Metal Fatigue in Engineering (p. 102). New York: Wiley.

    Google Scholar 

  22. Harte, A.-M., Fleck, N. A., & Ashby, M. F. (1999). Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Materialia, 47(8), 2511–2524.

    Article  CAS  Google Scholar 

  23. McCullough, & Fleck. (2000). The stress-life fatigue behavior of aluminium alloy foams. Fracture of Engineering Materials and Structures, 23(3), 199–208.

    Google Scholar 

  24. Olurin, B. (1999). Fatigue of an aluminium alloy foam, 7.

    Google Scholar 

  25. Schwartz, D. S. (1998). Porous AND Cellular materials for structural applications: Symposium held April 13–15, 1998, San Francisco, California, U.S.A. Materials Research Society.

    Google Scholar 

  26. Bao, G., & Suo, Z. (1992). Remarks on Crack-bridging concepts. Applied Mechanics Reviews, 45(8), 355–366.

    Article  Google Scholar 

  27. Suresh, S. (1992). Fatigue of materials (1st with corrections and exercises). Cambridge University Press.

    Google Scholar 

  28. Bergara, A., Dorado, J. I., Martin-Meizoso, A., & Martínez-Esnaola, J. M. (2017). Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM). International Journal of Fatigue, 103, 112–121.

    Article  Google Scholar 

  29. Banhart, J., & Brinkers, W. (1999). Fatigue behavior of aluminum foams. Journal of Materials Science Letters, 18(8), 617–619.

    Article  CAS  Google Scholar 

  30. Veale, P. J. (2010). Investigation of the behavior of open cell aluminum foam. University of Massachusetts Amherst.

    Google Scholar 

  31. Kolluri, M., Mukherjee, M., Garcia-Moreno, F., Banhart, J., & Ramamurty, U. (2008). Fatigue of a laterally constrained closed cell aluminum foam. Acta Materialia, 56(5), 1114–1125.

    Article  CAS  Google Scholar 

  32. Boller, C., & Seeger, T. (1987). Materials data for cyclic loading. Part. B, Part. B. http://site.ebrary.com/id/10988893.

  33. Evans, H. E. (1984). Mechanisms of creep fracture. Elsevier, Applied Science, London: Fracture mechanics.

    Google Scholar 

  34. Frost, H. J., & Ashby, M. F. (1982). Deformation mechanism maps: Plasticity and creep of metals and ceramics. Elsevier Science Limited: Technology & Engineering.

    Google Scholar 

  35. Anon. (2000). Design for creep with metal foams. In Metal foams, pp. 103–12. Elsevier.

    Google Scholar 

  36. Burteau, A., Jean-Dominique, B., Yves, B., & Samuel, F. (2014). On the creep deformation of nickel foams under compression. Comptes Rendus Physique, 15(8–9), 705–718.

    Article  CAS  Google Scholar 

  37. Andrews, E. W., Huang, J.-S., & Gibson, L. J. (1999). Creep behavior of a closed-cell aluminum foam. Acta Materialia, 47(10), 2927–2935.

    Article  CAS  Google Scholar 

  38. Couteau, O., & David, C. D. (2008). Creep of aluminum syntactic foams. Materials Science and Engineering A, 488(1–2), 573–579.

    Article  Google Scholar 

  39. Diologent, F., Conde, Y., Goodall, R., & Mortensen, A. (2009). Microstructure, strength and creep of aluminium-nickel open cell foam. Philosophical Magazine, 89(13), 1121–1139.

    Article  CAS  Google Scholar 

  40. Haag, M., Wanner, A., Clemens, H., Zhang, P., Kraft, O., & Arzt, E. (2003). Creep of aluminum-based closed-cell foams. Metallurgical and Materials Transactions A, 34(12), 2809–2817.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Kumar Rajak .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, D.K., Gupta, M. (2020). Yielding, Fatigue, and Creep Response of Metal Foams. In: An Insight Into Metal Based Foams. Advanced Structured Materials, vol 145. Springer, Singapore. https://doi.org/10.1007/978-981-15-9069-6_5

Download citation

Publish with us

Policies and ethics