Skip to main content

Melting of Molecular Crystals

  • Chapter
  • First Online:
Chemical Physics of Molecular Condensed Matter

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 104))

  • 501 Accesses

Abstract

Real examples of melting of molecular crystals indicate the possibility of their successive melting via various mesophases. We then learn microscopic models relevant to such successive meltings within the so-called mean-field treatment (the Bragg–Williams approximation). Finally, we see the possibility of the internal melting of crystals consisting of flexible molecules, the importance of which we discuss in Chap. 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Helium is omitted because of the absence of the triple point among gas, liquid, and crystal.

  2. 2.

    Here, the word “accidental” indicates that two phases are stable in both sides of the coexistence border and that the locating the transition point requires their comparison, in contrast to an ideal second-order transition with a diverging susceptibility at the critical point.

  3. 3.

    Observations for bulk samples implies that the tail is mainly not a surface effect but a bulk effect.

  4. 4.

    The detailed description is necessary for some cases with \(J<0\), which is not considered in this book.

  5. 5.

    Ordered occupation on two lattices can be imagined but does not occur in their treatment.

  6. 6.

    Subtraction of \(\frac{1}{2}\) from \(\xi \) and \(\sigma \) appearing later yields order parameter(s), which fit the ordinary definition of order parameters; null in the disordered state and finite in the ordered state.

  7. 7.

    Since the counterpart of the central spin is on the other lattice, the division by a factor 2 is unnecessary.

  8. 8.

    For \(n_{\alpha \alpha }\) and \(n_{\beta \beta }\), the factor 2 coming from UD and DU pairs is cancelled by the double count by zN.

  9. 9.

    Italic style is usually used for trans and gauche.

  10. 10.

    Biphenyl (\(n=2\)) is omitted from the present discussion because its twist phase transition is different character from those in others as briefly discussed in Sect. 5.5.3.

References

  1. K. Clusius, Z. Phys. Chem. B31, 459–474 (1936)

    Google Scholar 

  2. P. Flubacher, A.J. Leadbetter, J.A. Morrison, Proc. Roy. Soc. 78, 1449–1461 (1961)

    Article  CAS  Google Scholar 

  3. R.H. Beaumont, H. Chihara, J.A. Morrison, Proc. Roy. Soc. 78, 1462–1481 (1961)

    Article  CAS  Google Scholar 

  4. K. Clusius, L. Roccoboni, Z. Phys. Chem. B38, 81–95 (1937)

    Google Scholar 

  5. W.F. Giauque, J.O. Clayton, J. Am. Chem. Soc. 55, 4875–4889 (1933)

    Article  CAS  Google Scholar 

  6. C.H. Fagerstroem, A.C.H. Hallett, Ann. Acad. Sci. FennicæA VI 210, 210–213 (1961)

    Google Scholar 

  7. J.-H. Hu, D. White, H.L. Johnston, J. Am. Chem. Soc. 75, 5642–5645 (1953)

    Article  CAS  Google Scholar 

  8. E.K. Gill, J.A. Morrison, J. Chem. Phys. 45, 1585–5645 (1953)

    Article  Google Scholar 

  9. T. Atake, H. Chihara, Chem. Lett., 4129–688 (1976)

    Google Scholar 

  10. W.F. Giauque, T.M. Powell, J. Am. Chem. Soc. 61, 1970–1974 (1939)

    Google Scholar 

  11. D.L. Hildenbrand, W.R. Kramer, R.A. McDonald, D.R. Stull, J. Am. Chem. Soc. 80, 4129–4132 (1958)

    Google Scholar 

  12. J.A. Morrison, E.J. Richards, J. Chem. Thermodyn. 8, 1033–1038 (1976)

    Article  CAS  Google Scholar 

  13. G.G. Devyatykh, A.V. Guesev, A.M. Gibin, N.V. Zhernenkov, L.M. Zakharov, M. Yu, Antipin, Y.M.T. Struchov, Russ. J. Inorg. Chem. 30, 780 (1985)

    Google Scholar 

  14. G.G. Devyatykh, A.V. Gusev, A.M. Gibin, N.V. Zhernenkov, A.V. Kabanov, Zh. Neorg. Khim. 31, 2223–2226 (1986)

    Google Scholar 

  15. I.E. Paukov, Y.G Stenin, G.I. Frolova, Zh. Fiz. Khim. 53, 2636–2637 (1979)

    Google Scholar 

  16. G.D. Oliver, M. Eaton, H.M. Huffman, J. Am. Chem. Soc. 70, 1502–1505 (1948)

    Article  CAS  Google Scholar 

  17. R.D. Chirico, S.E. Knipmeyer, W.V. Steele, J. Chem. Thermodyn. 34, 1873–1884 (2002)

    Article  CAS  Google Scholar 

  18. K. Saito, T. Atake, H. Chihara, Bull. Chem. Soc. Jpn. 61, 679–688 (1988)

    Article  CAS  Google Scholar 

  19. R.D. Chirico, S.E. Knipmeyer, A. Nguyen, W.V. Steele, J. Chem. Thermodyn. 21, 1307–1331 (1989)

    Article  CAS  Google Scholar 

  20. J.C. van Miltenburg, J.A. Bouwstra, J. Chem. Thermodyn. 16, 61–65 (1984)

    Article  Google Scholar 

  21. T. Atake, H. Chihara, Bull. Chem. Soc. Jpn. 47, 2126–2136 (1974)

    Article  Google Scholar 

  22. W. Lenz, Phys. Z. 21, 613–615 (1920)

    CAS  Google Scholar 

  23. E. Ising, Z. Phys. 31, 253–258 (1925)

    Article  CAS  Google Scholar 

  24. L. Onsager, Phys. Rev. 65, 117–149 (1944)

    Article  CAS  Google Scholar 

  25. J. Timmermans, J. Phys. Chem. Solids 18, 1–8 (1961)

    Article  CAS  Google Scholar 

  26. Y. Kataoka, read at the Spring meeting of the Chemical Society of Japan (2017)

    Google Scholar 

  27. R.B. Griffiths, Phys. Rev. 136, A437–A439 (1964)

    Article  Google Scholar 

  28. W.L. Bragg, E.J. Williams, Proc. Roy. Soc. London 145A, 699–730 (1934)

    Google Scholar 

  29. J.E. Lennard-Jones, A.F. Devonshire, Proc. Roy. Soc. London 169A, 317–338 (1939)

    Google Scholar 

  30. J.A. Pople, F.E. Karasz, J. Phys. Chem. Solids 18, 28–39 (1961)

    Article  CAS  Google Scholar 

  31. F.E. Karasz, J.A. Pople, J. Phys. Chem. Solids 20, 294–306 (1961)

    Article  CAS  Google Scholar 

  32. L.M. Amzel, L.N. Becka, J. Phys. Chem. Solids 30, 521–538 (1969); ibid, 30, 2495 (1969) (errata)

    Google Scholar 

  33. S. Chandrasekhar, R. Shashidhar, N. Tara, Mol. Cryst. Liq. Cryst. 10, 337–358 (1970)

    Article  CAS  Google Scholar 

  34. S. Chandrasekhar, R. Shashidhar, N. Tara, Mol. Cryst. Liq. Cryst. 12, 245–250 (1971)

    Article  CAS  Google Scholar 

  35. K. Clusius, L. Popp, Z. Phys. Chem. B46, 63–81 (1940)

    Google Scholar 

  36. H.M. James, T.A. Keenan, J. Chem. Phys. 31, 12–41 (1959)

    Article  CAS  Google Scholar 

  37. A.I. Prokhatilov, A.P. Isakina, Acta Crystallogr. Sec. B 36, 1576–1580 (1980)

    Article  Google Scholar 

  38. C.A. English, J.A. Venables, Proc. Roy. Soc. London A 340, 57–80 (1974)

    Article  CAS  Google Scholar 

  39. T. Yamamoto, Y. Kataoka, Phys. Rev. Lett. 20, 1–3 (1968)

    Article  CAS  Google Scholar 

  40. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornel University Press, Ithaca, 1979)

    Google Scholar 

  41. J.D. Kemp, C.J. Eagan, J. Am. Chem. Soc. 60, 1521–1525 (1938)

    Article  CAS  Google Scholar 

  42. J.G. Aston, G.H. Messerly, J. Am. Chem. Soc. 62, 1917–1923 (1940)

    Article  CAS  Google Scholar 

  43. J.F. Messerly, G.B. Guthrie, S.S. Todd, H.L. Finke, J. Chem. End. Data 12, 338–346 (1967)

    Article  CAS  Google Scholar 

  44. D.R. Douslin, H.M. Huffman, J. Am. Chem. Soc. 68, 1704–1708 (1946)

    Article  CAS  Google Scholar 

  45. J.C. van Miltenburg, G.J.K. van den Berg, M.J. van Bommel, J. Chem. Thermodyn. 19, 1129–1137 (1987)

    Article  Google Scholar 

  46. H.L. Finke, M.E. Gross, G. Waddington, H.M. Huffman, J. Am. Chem. Soc. 76, 333–341 (1954)

    Article  CAS  Google Scholar 

  47. A.A. Schaerer, C.J. Busso, A.E. Smith, L.B. Skinner, J. Am. Chem. Soc. 77, 2017–2019 (1955)

    Article  CAS  Google Scholar 

  48. R.J.L. Andon, J.F. Martin, J. Chem. Thermodyn. 8, 1159–1166 (1976)

    Article  CAS  Google Scholar 

  49. M. Sorai, K. Tsuji, H. Suga, S. Seki, Mol. Cryst. Liq. Cryst. 59, 33–58 (1980)

    Article  CAS  Google Scholar 

  50. M. Sorai, K. Saito, Chem. Rec. 3, 29–39 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. K. Horiuchi, Y. Yamamura, R. Pełka, M. Sumita, S. Yasuzuka, M. Massalska-Arodź, K. Saito, J. Phys. Chem. B 114, 4870–4875 (2010)

    Article  CAS  Google Scholar 

  52. Y. Shimizu, Y. Ohte, Y. Yamamura, K. Saito, Chem. Phys. Lett. 470, 295–299 (2009)

    Article  CAS  Google Scholar 

  53. J.L. Baudour, Y. Delugeard, H. Cailleau, Acta Crystallogr. Sec. B 32, 150–154 (1976)

    Article  Google Scholar 

  54. J.L. Baudour, L. Toupet, Y. Délugeard, S. Ghémid, Acta Crystallogr. Sec. C 42, 1211–1217 (1986)

    Article  Google Scholar 

  55. J.L. Baudour, Y. Delugeard, P. Rivet, Acta Crystallogr. Sec. B 34, 625–628 (1978)

    Article  Google Scholar 

  56. K. Saito, T. Atake, H. Chihara, J. Chem. Thermodyn. 17, 539–548 (1985)

    Article  CAS  Google Scholar 

  57. K. Saito, T. Atake, H. Chihara, Bull. Chem. Soc. Jpn. 61, 2327–2336 (1986)

    Article  Google Scholar 

  58. K. Saito, Y. Yamamura, M. Sorai, Bull. Chem. Soc. Jpn. 73, 2713–2718 (2000); Acta Crystallogr. Sec. C 42, 1211–1217 (1976)

    Google Scholar 

  59. H.M. Rietveld, E.N. Maslen, C.J.B. Clews, Acta Crystallogr. Sec. B 26, 693–706 (1970)

    Article  CAS  Google Scholar 

  60. J.L. Baudour, H. Cailleau, Acta Crystallogr. Sec. B 33, 1773–1780 (1976)

    Article  Google Scholar 

  61. Y. Delugeard, J. Desuche, J.L. Baudour, Acta Crystallogr. Sec. B 32, 702–705 (1976)

    Article  Google Scholar 

  62. K.N. Baker, A.V. Fratini, T. Resch, H.C. Knachel, W.W. Adams, E.P. Socci, B.L. Farmer, Polymer 34, 1571–1587 (1993)

    Article  CAS  Google Scholar 

  63. G.W. Smith, Mol. Cryst. Liq. Cryst. 49, 207–209 (1979)

    Article  CAS  Google Scholar 

  64. Y. Yamamura, H. Saitoh, M. Sumita, K. Saito, J. Phys.: Condens. Matter 19, 176219 (2007)

    Google Scholar 

  65. Y. Yamamura, H. Shimoi, M. Sumita, S. Yasuzuka, K. Adachi, A. Fuyuhiro, S. Kawata, K. Saito, J. Phys. Chem. A 112, 4465–4469 (2008)

    Article  CAS  PubMed  Google Scholar 

  66. Y. Miyazaki, Q. Wang, A. Sato, K. Saito, M. Yamamoto, H. Kitagawa, T. Mitani, M. Sorai, J. Phys. Chem. B 106, 197–202 (2002)

    Article  CAS  Google Scholar 

  67. S. Ikeuchi, Y. Yamamura, Y. Yoshida, M. Mitsumi, K. Toriumi, K. Saito, Bull. Chem. Soc. Jpn. 83, 261–266 (2010)

    Article  CAS  Google Scholar 

  68. S. Ikeuchi, K. Saito, Curr. Inorg. Chem. 4, 74–84 (2014)

    Article  CAS  Google Scholar 

  69. K. Kishimoto, H. Suga, S. Seki, Bull. Chem. Soc. Jpn. 51, 1691–1696 (1978)

    Article  CAS  Google Scholar 

  70. C. Tschierske, G. Ungar, ChemPhysChem 17, 9–26 (2016)

    Article  CAS  PubMed  Google Scholar 

  71. C. Dressel, F. Liu, M. Prehm, X. Zeng, G. Ungar, C. Tschierske, Angew. Chem. Int. Ed. 53, 13115–13120 (2014)

    Article  CAS  Google Scholar 

  72. C. Dressel, T. Reppe, M. Perhm, M. Brautzsch, C. Tschierske, Nat. Chem. 6, 971–977 (2014)

    Article  CAS  PubMed  Google Scholar 

  73. S. Kutsumizu, S. Miisako, Y. Miwa, M. Kitagawa, Y. Yamamura, K. Saito, Phys. Chem. Chem. Phys. 18, 17341–17344 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Saito .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, K. (2020). Melting of Molecular Crystals. In: Chemical Physics of Molecular Condensed Matter. Lecture Notes in Chemistry, vol 104. Springer, Singapore. https://doi.org/10.1007/978-981-15-9023-8_6

Download citation

Publish with us

Policies and ethics