Skip to main content

Molecular Crystals

  • Chapter
  • First Online:
Chemical Physics of Molecular Condensed Matter

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 104))

  • 488 Accesses

Abstract

After seeing the entropic mechanism of crystallization, which is fundamental, we acquire an idea of its theoretical treatment within the Landau theory. Some issues closely related to the so-called crystal engineering, such as packing of anisotropic molecules and lattice energy, are introduced. A new definition of crystals covers not only the traditional crystals that are periodic in the three-dimension but also other regular solids, which exhibit sharp diffractograms similarly to the traditional crystals when irradiated by appropriate radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A numerical factor to correctly normalize is not a matter here. These can be adjusted in chosing expansion coefficients, u, v and w.

  2. 2.

    Generally, the scattering power of scatterers, such as atoms, is a function of scattering vector \(\textit{\textbf{q}}\).

  3. 3.

    Note that “i” in formulas in this section is the imaginary unit, i.e., \(i^2=-1\) while “j” is an integer index.

  4. 4.

    This argument applies to smooth modulation waves, such as a sinusoidal one. If the structural modulation on each site is discrete, the energy is equal before and after its shift, but the activation energy is necessary.

  5. 5.

    Crystalline packings with complete mechanical stability as low as its packing density of \(\pi /4\sqrt{2}\) (\({\approx }\,0.55\)) are known for hard spheres [28].

  6. 6.

    The structure of an ET molecule is shown in Fig. 8.4. Other charge-transfer salts such (ET)\(\cdot \)I\(_3\) [36] and solvated ones such as (ET)\(\cdot \)I\(_3\)(TCE)\(_{0.33}\) (TCE: trichloroethane) [37] are known, but these are not polymorphs of (ET)\(_2\)I\(_3\).

  7. 7.

    If the transition takes several tens hours [38, 39], one may miss it, leading to a practical identification of polymorphism.

  8. 8.

    The glass transition on heating.

  9. 9.

    Different definitions may be used for the Madelung constant. For example, it can be based on not the lattice constant but the distance between adjacent ions.

References

  1. International Union of Crystallography, Acta Crystallogr. A 48, 922–946 (1992)

    Article  Google Scholar 

  2. A. Donev, S. Torquato, F.H. Stillinger, R. Connelly, J. Appl. Phys. 95, 989–999 (2004)

    Article  CAS  Google Scholar 

  3. S. Torquato, T.M. Truskett, P.G. Debenedetti, Phys. Rev. Lett. 84, 2064–2067 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208–1209 (1957)

    Article  CAS  Google Scholar 

  5. S. Alexander, J. McTague, Phys. Rev. Lett. 41, 702–705 (1978)

    Article  CAS  Google Scholar 

  6. D. Shechtman, I. Blech, D. Gratias, J. Cahn, Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  CAS  Google Scholar 

  7. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  8. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  9. S. Kutsumizu, H. Mori, M. Fukatami, K. Saito, J. Appl. Crystallogr. 40, s279–s282 (2007)

    Article  CAS  Google Scholar 

  10. K. Saito, T. Atake, H. Chihara, Chem. Lett., 531–534 (1984)

    Google Scholar 

  11. K. Saito, T. Atake, H. Chihara, Bull. Chem. Soc. Jpn. 61, 679–688 (1988)

    Article  CAS  Google Scholar 

  12. J. Etrillard, J.C. Lasjaunias, K. Biljakovic, B. Toudic, G. Coddens, Phys. Rev. Lett. 76, 2334–2337 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. H. Fröhlich, Proc. Roy. Soc. A 223, 296–305 (1954)

    Google Scholar 

  14. K. Hayashida, T. Dotera, A. Takano, Y. Matsushita, Phys. Rev. Lett. 98, 195502 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. K. Saito, Y. Yamamura, S. Kutsumizu, J. Phys. Soc. Jpn. 77, 093601 (2008)

    Article  CAS  Google Scholar 

  16. J.A. Pople, F.E. Karasz, J. Phys. Chem. Solids 18, 28–39 (1961)

    Article  CAS  Google Scholar 

  17. S. Chandrasekhar, R. Shashidhar, N. Tara, Mol. Cryst. Liq. Cryst. 10, 337–358 (1970)

    Article  CAS  Google Scholar 

  18. P. Bolhius, D. Frenkel, J. Chem. Phys. 106, 666–687 (1997)

    Article  Google Scholar 

  19. J.A.C. Veerman, D. Frenkel, Phys. Rev. A 43, 4334–4343 (1991)

    Article  CAS  PubMed  Google Scholar 

  20. V.E. Podneks, I.W. Hamley, JETP Lett. 64, 617–624 (1996)

    Article  Google Scholar 

  21. S. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin, B.W. Ninham, The Language of Shape (Elsevier, Amsterdam, 1997)

    Google Scholar 

  22. A.-M. Levelut, M. Clerc, Liq. Cryst. 24, 105–115 (1998)

    Article  CAS  Google Scholar 

  23. S. Kutsumizu, T. Ichikawa, S. Nojima, S. Yano, Chem. Commun. (Cambridge), 1181–1182 (1999)

    Google Scholar 

  24. H. Mori, S. Kutsumizu, T. Ito, M. Fukatami, K. Saito, K. Sakajiri, K. Moriya, Chem. Lett. 35, 362–363 (2006)

    Article  CAS  Google Scholar 

  25. Y. Nakazawa, Y. Yamamura, S. Kutsumizu, K. Saito, J. Phys. Soc. Jpn. 81, 094601 (2012)

    Article  CAS  Google Scholar 

  26. K. Ozawa, Y. Yamamura, S. Yasuzuka, H. Mori, S. Kutsumizu, K. Saito, J. Phys. Chem. B 112, 12179–12181 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. K. Saito, Y. Yamamura, Y. Miwa, S. Kutsumizu, Phys. Chem. Chem. Phys. 18, 3280–3284 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. S. Torquato, F.H. Stillinger, Toward the jamming threshold of sphere packing, J. Appl. Phys. 103, 093511 (2007); Erratun: Toward the jamming threshold of sphere packing, J. Appl. Phys. 103, 129902 (2008)

    Google Scholar 

  29. A.I. Kitaigorodskii, Organic Chemical Crystallography, Consultants Bureau, New York, 1961. (authorized translation of the original Russian text published by the Press of the Academy of Sciences of the U.S.S.R. in 1955)

    Google Scholar 

  30. A.I. Kitaigorodsky, Molecular Crystals and Molecules (Academic Press, New York, 1973)

    Google Scholar 

  31. CSD Space Group Statistics 2015, the statistics of the Cambridge Structural Database as of November 6, 2015, available at http://ccdc.cam.ac.uk (The Cambridge Crystallographic Data Centre)

  32. T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, H. Inokuchi, Chem. Lett., 957–960 (1984)

    Google Scholar 

  33. K. Bender, I. Hennig, D. Schweizer, K. Dietz, H. Endres, H.J. Keller, Mol. Cryst. Liq. Cryst. 108, 359–371 (1984)

    Article  CAS  Google Scholar 

  34. M. Kurmoo, D.R. Talham, K.L. Pritchard, P. Day, A.M. Stringer, J.A.K. Howard, Synth. Metals 27, A177–A182 (1988)

    Article  CAS  Google Scholar 

  35. A. Kobayashi, R. Kato, H. Kobayashi, S. Moriyama, Y. Nishio, K. Kajita, W. Sasaki, Chem. Lett., 459–462 (1987)

    Google Scholar 

  36. R.P. Shibaeba, R.M. Lobkovskaya, E.B. Yagubskii, E.E. Laukhina, Sov. Phys. Crystallogr. 32, 530–532 (1987)

    Google Scholar 

  37. R.P. Shibaeba, R.M. Lobkovskaya, V.F. Kaminskii, S.V. Lindeman, E.B. Yagubskii, Sov. Phys. Crystallogr. 31, 546–549 (1986)

    Google Scholar 

  38. Y. Tozuka, Y. Yamamura, K. Saito, M. Sorai, J. Phys. Chem. 112, 2355–2282 (2000)

    Article  CAS  Google Scholar 

  39. Y. Nakazawa, M. Tamura, N. Shirakawa, D. Shiomi, M. Takahashi, M. Kinoshita, M. Ishikawa, Phys. Rev. B 46, 8906–8914 (1992)

    Article  CAS  Google Scholar 

  40. Y. Yamamura, Y. Suzuki, M. Sumita, K. Saito, J. Phys. Chem. B 116, 3938–3943 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi, M. Ishikawa, M. Takahashi, M. Kinoshita, Chem. Phys. Lett. 186, 401–404 (1991)

    Article  CAS  Google Scholar 

  42. M. Born, Verhand. Deutsch. Phys. Gesell. 21, 679–685 (1919)

    CAS  Google Scholar 

  43. F. Haber, Verhand. Deutsch. Phys. Gesell. 21, 750–768 (1919)

    CAS  Google Scholar 

  44. T.H.K. Barron, W.T. Berg, J.A. Morrison, Proc. Roy. Soc. A 242, 478–492 (1957)

    CAS  Google Scholar 

  45. T. Atake, H. Chihara, J. Chem. Thermodyn. 3, 51–60 (1971)

    Article  CAS  Google Scholar 

  46. T. Atake, H. Chihara, Bull. Chem. Soc. Jpn. 47, 2126–2136 (1974)

    Article  Google Scholar 

  47. P.P. Ewald, Ann. Physik 64, 253–287 (1921)

    Article  Google Scholar 

  48. E.F. Bertaut, J. Phys. Rad. 13, 499–505 (1952)

    Article  CAS  Google Scholar 

  49. D.E. Williams, Acta Crystallogr. Sect. A 27, 452–455 (1971)

    Article  CAS  Google Scholar 

  50. B.R.A. Nijboer, F.W. de Wette, Physica 23, 309–321 (1957)

    Article  CAS  Google Scholar 

  51. B.R.A. Nijboer, F.W. de Wette, Physica 24, 422–431 (1958)

    Article  CAS  Google Scholar 

  52. A.S. Oja, M.M. Salomaa, J. Phys. C 17, L187–L193 (1984)

    Article  CAS  Google Scholar 

  53. J.W. Weenk, H.A. Harwig, J. Phys. Chem. Solids 36, 783–789 (1975)

    Article  CAS  Google Scholar 

  54. H. Nakayama, K. Saito, M. Kishita, Z. Naturforsch. a 45a, 375–379 (1990)

    Google Scholar 

  55. T. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors (Springer, Heidelberg, 1998)

    Book  Google Scholar 

  56. T. Mori, Electronic Properties of Organic Conductors (Springer, Heidelberg, 2016)

    Book  Google Scholar 

  57. G.R. Desiraju, Crystal Engineering: The Design of Organic Solids (Elsevier, Amsterdam, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Saito .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, K. (2020). Molecular Crystals. In: Chemical Physics of Molecular Condensed Matter. Lecture Notes in Chemistry, vol 104. Springer, Singapore. https://doi.org/10.1007/978-981-15-9023-8_4

Download citation

Publish with us

Policies and ethics