Abstract
This chapter presents general aspects regarding microalgae biology and growth under ex situ conditions. Emphasis is given on some aspects of microalgae responses to major environmental and nutritional factors, for example, temperature, light, nutrients, and pH. Then, management of photobioreactor systems where microalgae are grown to achieve the objectives of producing high biomass and bioactive compounds for biotechnological applications is addressed. The feasibility of producing multiproducts has led to more efficient production pathways and use of materials and energy. Most of the studies about microalgae are addressed in an interrelated way with environment and agricultural applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Aal E-SM, Akhtar H, Zaheer K, Ali R (2013) Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5:1169–1185. https://doi.org/10.3390/nu5041169
Adak A, Prasanna R, Babu S, Bidyarani N, Verma S et al (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39:1216–1232. https://doi.org/10.1080/01904167.2016.1148723
Adams DG (2000) Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3:618–624. https://doi.org/10.1016/S1369-5274(00)00150-8
Ahmad A, Munir B, Abrar M, Bashir S, Adnan M et al (2012) Perspective of β-glucan as functional ingredient for food industry. Nutr Food Sci 2:1–6. https://doi.org/10.4172/2155-9600.1000133
Ahmad A, Shah SMU, Buang A, Othman MF, Abdullah MA (2014) Evaluation of aerobic and anaerobic co-digestion of Tetraselmis suecica and oil palm empty fruit bunches by response surface methodology. Adv Mater Res 925:243–247. https://doi.org/10.4028/www.scientific.net/AMR.925.243
Ahmed M, Stal LJ, Hasnanin S (2010) Production of 3-indole acetic acid by the cyanobacterium Arthrospira platensis strain MM G9. J Microbiol Biotechnol 20:1259–1265
Ahmed F, Li Y, Fanning K, Netzel M, Schenk PM (2015) Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Food Res Int 74:231–236. https://doi.org/10.1016/j.foodres.2015.05.021
Ajala SO, Alexander ML (2020) Application of bio-based alkali to induce flocculation of microalgae biomass. Biomass Bioenergy 132:105431. https://doi.org/10.1016/j.biombioe.2019.105431
Akalın MK, Tekin K, Karagöz S (2017) Supercritical fluid extraction of biofuels from biomass. Environ Chem Lett 15:29–41. https://doi.org/10.1007/s10311-016-0593-z
Albarelli JQ, Santos DT, Ensinas AV, Maréchal F, Cocero MJ et al (2018) Comparison of extraction techniques for product diversification in a supercritical water gasification-based sugarcane-wet microalgae biorefinery: thermoeconomic and environmental analysis. J Clean Prod 201:697–705. https://doi.org/10.1016/j.jclepro.2018.08.137
Altmann BA, Wigger R, Ciulu M, Mörlein D (2020) The effect of insect or microalga alternative protein feeds on broiler meat quality. J Sci Food Agric 100:4292–4302. https://doi.org/10.1002/jsfa.10473
Alwathnani H, Johansen JR (2011) Cyanobacteria in soils from a Mojave desert ecosystem. Monogr West N Am Nat 5:71–89. https://doi.org/10.3398/042.005.0103
Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN et al (2019) Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr 59:1880–1902. https://doi.org/10.1080/10408398.2018.1432561
Andrade DS, Gavilanes FZ, Silva HR, Henrique Leite Castro G, Telles TS (2020a) Sustainable bioenergy production. Elsevier, London, pp 363–391. https://doi.org/10.1016/b978-0-12-819597-0.00019-2
Andrade DS, Telles TS, Leite Castro GH (2020b) The Brazilian microalgae production chain and alternatives for its consolidation. J Clean Prod 250:119526. https://doi.org/10.1016/j.jclepro.2019.119526
Aslam M, Ahmad R, Yasin M, Khan AL, Shahid MK et al (2018) Anaerobic membrane bioreactors for biohydrogen production: recent developments, challenges and perspectives. Bioresour Technol 269:452–464. https://doi.org/10.1016/j.biortech.2018.08.050
Ayala-Parra P, Liu Y, Field JA, Sierra-Alvarez R (2017) Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renew Energy 108:410–416. https://doi.org/10.1016/j.renene.2017.02.085
Babu S, Bidyarani N, Chopra P, Monga D, Kumar R et al (2015) Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. Eur J Plant Pathol 142:345–362. https://doi.org/10.1007/s10658-015-0619-6
Bafana A, Dutt S, Kumar S, Ahuja PS (2011) Superoxide dismutase: an industrial perspective. Crit Rev Biotechnol 31:65–76. https://doi.org/10.3109/07388551.2010.490937
Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Drugs 17:304
Barone V, Puglisi I, Fragalà F, Lo Piero AR, Giuffrida F et al (2019) Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J Appl Phycol 31:465–470. https://doi.org/10.1007/s10811-018-1518-y
Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173. https://doi.org/10.1016/j.algal.2013.01.004
Becker E (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002
Becker EW (2013) Microalgae in human and animal nutrition. In: Richmond AHQ (ed) Handbook of microalgal culture: applied phycology and biotechnology, vol 25. Wiley, London, pp 461–503
Begum H, Yusoff FMD, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 56:2209–2222. https://doi.org/10.1080/10408398.2013.764841
Beigbeder J-B, Boboescu I-Z, Lavoie J-M (2019) Thin stillage treatment and co-production of bio-commodities through finely tuned Chlorella vulgaris cultivation. J Clean Prod 216:257–267. https://doi.org/10.1016/j.jclepro.2019.01.111
Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F et al (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493. https://doi.org/10.1016/j.biotechadv.2014.10.003
Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy 154:1062–1071. https://doi.org/10.1016/j.apenergy.2014.12.009
Bharadwaj SVV, Ram S, Pancha I, Mishra S (2020) Recent trends in strain improvement for production of biofuels from microalgae. Elsevier, London. https://doi.org/10.1016/b978-0-12-817536-1.00014-x
Bharti A, Prasanna R, Kumar G, Kumar A, Nain L (2019) Co-cultivation of cyanobacteria for raising nursery of chrysanthemum using a hydroponic system. J Appl Phycol 31:3625–3635. https://doi.org/10.1007/s10811-019-01830-9
Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756. https://doi.org/10.1007/s10811-013-9983-9
Borowitzka M (2018) Commercial-scale production of microalgae for bioproducts. In: Barre SL, Bates SS (eds) Blue biotechnology: production and use of marine molecules, vol 1. Wiley-VCH, London, pp 33–65. https://doi.org/10.1002/9783527801718.ch2
Candido C, Lombardi AT (2017) Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J Appl Phycol 29:45–53. https://doi.org/10.1007/s10811-016-0940-2
Castro JDS, Calijuri ML, Mattiello EM, Ribeiro VJ, Assemany PP (2020) Algal biomass from wastewater: soil phosphorus bioavailability and plants productivity. Sci Total Environ 711:135088. https://doi.org/10.1016/j.scitotenv.2019.135088
Chanda M-J, Merghoub N, El Arroussi H (2019) Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J Microbiol Biotechnol 35:177. https://doi.org/10.1007/s11274-019-2745-3
Chandra N, Shukla P, Mallick N (2020) Role of cultural variables in augmenting carbohydrate accumulation in the green microalga Scenedesmus acuminatus for bioethanol production. Biocatal Agric Biotechnol 26:101632–101632. https://doi.org/10.1016/j.bcab.2020.101632
Chauhan DS, Goswami G, Dineshbabu G, Palabhanvi B, Das D (2020) Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Convers Biorefin 10:339–349. https://doi.org/10.1007/s13399-019-00432-2
Che CA, Kim SH, Hong HJ, Kityo MK, Sunwoo IY et al (2019) Optimization of light intensity and photoperiod for Isochrysis galbana culture to improve the biomass and lipid production using 14-L photobioreactors with mixed light emitting diodes (LEDs) wavelength under two-phase culture system. Bioresour Technol 285:121323. https://doi.org/10.1016/j.biortech.2019.121323
Chen L, Liu T, Zhang W, Chen X, Wang J (2012) Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 111:208–214. https://doi.org/10.1016/j.biortech.2012.02.033
Cheng P, Chen D, Liu W, Cobb K, Zhou N et al (2020) Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. Sci Total Environ 725:138263. https://doi.org/10.1016/j.scitotenv.2020.138263
Chittapun S, Limbipichai S, Amnuaysin N, Boonkerd R, Charoensook M (2018) Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: a pot experiment. J Appl Phycol 30:79–85. https://doi.org/10.1007/s10811-017-1138-y
Chu W-L (2017) Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. Eur J Phycol 52:419–437. https://doi.org/10.1080/09670262.2017.1379100
Chu WL, Phang SM (2019) Biosorption of heavy metals and dyes from industrial effluents by microalgae. https://doi.org/10.1007/978-981-13-2264-8_23
Chua SY, Periasamy LAP, Goh CMH, Tan YH, Mubarak NM et al (2020) Biodiesel synthesis using natural solid catalyst derived from biomass waste — a review. J Ind Eng Chem 81:41–60. https://doi.org/10.1016/j.jiec.2019.09.022
Coates R, Trentacoste E, Gerwick W (2013) Handbook of microalgal culture: applied phycology and biotechnology, vol 26, 2nd edn. Wiley, London, pp 516–543
Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151. https://doi.org/10.1016/j.cep.2009.03.006
Coppens J, Grunert O, Van Den Hende S, Vanhoutte I, Boon N et al (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28:2367–2377. https://doi.org/10.1007/s10811-015-0775-2
Corrêa da Silva MG, Ferreira SP, Dora CL, Hort MA, Giroldo D et al (2020) Phenolic compounds and antioxidant capacity of Pediastrum boryanum (Chlorococcales) biomass. Int J Environ Health Res 2020:1–13. https://doi.org/10.1080/09603123.2020.1744113
Coulombier N, Nicolau E, Le Déan L, Antheaume C, Jauffrais T et al (2020) Impact of light intensity on antioxidant activity of tropical microalgae. Drugs 18:20122. https://doi.org/10.3390/md18020122
da Silva RPFF, Rocha-Santos TAP, Duarte AC (2016) Supercritical fluid extraction of bioactive compounds. TrAC 76:40–51. https://doi.org/10.1016/j.trac.2015.11.013
de Carvalho JC, Magalhães AI, de Melo Pereira GV, Medeiros ABP, Sydney EB et al (2020) Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour Technol 300:122719. https://doi.org/10.1016/j.biortech.2019.122719
de los Reyes C, Ávila-Román J, Ortega MJ, de la Jara A, García-Mauriño S et al (2014) Oxylipins from the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana and their activity as TNF-α inhibitors. Phytochemistry 102:152–161. https://doi.org/10.1016/j.phytochem.2014.03.011
De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304. https://doi.org/10.1002/bit.22257
Del Campo JA, Moreno J, Rodrı́guez H, Angeles Vargas M, Rivas J et al (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59. https://doi.org/10.1016/S0168-1656(99)00178-9
Delbrut A, Albina P, Lapierre T, Pradelles R, Dubreucq E (2018) Fucoxanthin and polyunsaturated fatty acids co-extraction by a green process. Molecules 23:874. https://doi.org/10.3390/molecules23040874
Demirbaş A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337. https://doi.org/10.1080/00908310390266643
Deng L, Liu Y, Wang W (2020) Biogas technology. https://doi.org/10.1007/978-981-15-4940-3
Di CA, Marzano SAN, Legros A, Naveau HP, Nyns E (2007) Biomethanation of the marine algae tetraselmis biomethanation of the marine algae. Int J Solar Energy 2007:37–41
Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A et al (2019) The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valorizat 10:1101–1110. https://doi.org/10.1007/s12649-017-0123-7
Dmytryk A, Michalak I, Wilk R, Chojnacka K, Górecka H et al (2015) Innovative seed treatment with algae homogenate. Waste Biomass Valorizat 6:441–448. https://doi.org/10.1007/s12649-015-9363-6
Dong H, Yu H, Yu H, Gao N, Wang X (2013) Enhanced performance of activated carbon-polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuel cells. J Power Sources 232:132–138
Dunn K, Rose P (2013) Arthrospira (Spirulina) in tannery wastewaters part 1: the microbial ecology of tannery waste stabilisation ponds and the management of noxious odour emissions using microalgal capping. Water SA 39:271–278. https://doi.org/10.4314/wsa.v39i2.11
Ebrahiminezhad A, Rasoul-Amini S, Ghoshoon MB, Ghasemi Y (2014) Chlorella vulgaris, a novel microalgal source for l-asparaginase production. Biocatal Agric Biotechnol 3:214–217. https://doi.org/10.1016/j.bcab.2013.10.005
Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants — a review. J Photochem Photobiol B Biol 41:189–200. https://doi.org/10.1016/S1011-1344(97)00092-4
Einali A, Mazang-Ghasemi S, Valizadeh J, Noorozifar M (2017) Metabolic responses and 2-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts. Acta Bot Bras 31:180–190
Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41:12772–12798. https://doi.org/10.1016/j.ijhydene.2016.05.115
Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40. https://doi.org/10.1007/s00253-009-2420-y
Galès A, Triplet S, Geoffroy T, Roques C, Carré C et al (2020) Control of the pH for marine microalgae polycultures: a key point for CO2 fixation improvement in intensive cultures. J CO2 Utilizat 38:187–193. https://doi.org/10.1016/j.jcou.2020.01.019
Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061. https://doi.org/10.1007/s10811-015-0625-2
Gavilanes FZ, Guedes CLB, Silva HR, Nomura RG, Andrade DS (2017) Physic nut seed cake methanation and chemical characterization of anaerobic bio-digested substrate. Waste Biomass Valorizat 10:1267–1276. https://doi.org/10.1007/s12649-017-0148-y
Gayathri M, Kumar PS, Prabha AML, Muralitharan G (2015) In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515. Algal Res 7:100–105. https://doi.org/10.1016/j.algal.2014.12.009
Geider R, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17. https://doi.org/10.1017/S0967026201003456
Gemin LG, Mógor ÁF, De Oliveira Amatussi J, Mógor G (2019) Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci Hortic 256:108560. https://doi.org/10.1016/j.scienta.2019.108560
Godlewska K, Michalak I, Pacyga P, Baśladyńska S, Chojnacka K (2019) Potential applications of cyanobacteria: spirulina platensis filtrates and homogenates in agriculture. World J Microbiol Biotechnol 35:80. https://doi.org/10.1007/s11274-019-2653-6
Goh BHH, Ong HC, Cheah MY, Chen WH, Yu KL et al (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sust Energ Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012
Gomes AF, Bicudo TC, Costa M, Souza LD, LSd C (2019) Extraction and characterization of the saponifiable lipid fraction from microalgae Chlamydomonas sp. cultivated under stress. J Therm Anal Calorim 137:1621–1634. https://doi.org/10.1007/s10973-019-08071-5
Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262. https://doi.org/10.1016/S0960-8524(97)00029-1
González-Fernández C, Sialve B, Bernet N, Steyer JP (2012) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefin 6:205–218
Gouveia L, Batista AP, Sousa I, Raymundo A, Bandarra NM (2008) Microalgae in novel food products. In: Kn P (ed) Food chemistry research developments. Nova Science Publishers, Inc., New York, pp 75–111
Grune T, Lietz G, Palou A, Ross AC, Stahl W et al (2010) β-Carotene is an important vitamin a source for humans. J Nutr 140:2268S–2285S. https://doi.org/10.3945/jn.109.119024
Grzesik M, Romanowska-Duda Z, Kalaji HM (2017) Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55:510–521. https://doi.org/10.1007/s11099-017-0716-1
Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in chlorella (chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72–79. https://doi.org/10.1111/j.0022-3646.1990.00072.x
Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Drugs 9:625–644. https://doi.org/10.3390/md9040625
Gunes S, Tamburaci S, Imamoglu E, Dalay MC (2015) Determination of superoxide dismutase activities in different cyanobacteria for scavenging of reactive oxygen species. J Biol Active Prod Nat 5:25–32. https://doi.org/10.1080/22311866.2014.983973
Guo X, Fan C, Chen Y, Wang J, Yin W et al (2017) Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea. BMC Plant Biol 17:48. https://doi.org/10.1186/s12870-017-0995-5
Hadiyanto H, Christwardana M, da Costa C (2019) Electrogenic and biomass production capabilities of a microalgae–microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sour Pt A 2019:1–12. https://doi.org/10.1080/15567036.2019.1668085
Han S-I, Chang SH, Lee C, Jeon MS, Heo YM et al (2020) Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris. Bioresour Technol 314:123725. https://doi.org/10.1016/j.biortech.2020.123725
Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203. https://doi.org/10.1002/jctb.2287
Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467. https://doi.org/10.1016/j.apenergy.2010.10.048
Hashtroudi M, Ghassempour A, Riahi H, Shariatmadari Z, Khanjir M (2012) Endogenous auxins in plant growth-promoting Cyanobacteria—Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 2012:1–8. https://doi.org/10.1007/s10811-012-9872-7
Hemaiswarya S, Raja R, Ravi Kumar R, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746. https://doi.org/10.1007/s11274-010-0632-z
Hena S, Fatihah N, Tabassum S, Ismail N (2015) Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement. Water Res 80:346–356. https://doi.org/10.1016/j.watres.2015.05.001
Henrikson R (2010) Earth food spirulina. How this remarkable blue-green algae can transform your health and our planet. Ronore Enterprises, Hawaii
Higgins BT, Gennity I, Fitzgerald PS, Ceballos SJ, Fiehn O et al (2018) Algal–bacterial synergy in treatment of winery wastewater. npj Clean Water 1:6. https://doi.org/10.1038/s41545-018-0005-y
Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A et al (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198. https://doi.org/10.1016/j.biortech.2012.10.015
Hu J, Nagarajan D, Zhang Q, Chang J-S, Lee D-J (2018) Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv 36:54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009
Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46. https://doi.org/10.1016/j.apenergy.2009.06.016
Huo S, Liu J, Addy M, Chen P, Necas D et al (2020) The influence of microalgae on vegetable production and nutrient removal in greenhouse hydroponics. J Clean Prod 243:118563. https://doi.org/10.1016/j.jclepro.2019.118563
Hussain A, Hasnain S (2012) Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol 28:1459–1466. https://doi.org/10.1007/s11274-011-0947-4
Jenke-Kodama H, Sandmann A, Müller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027–2039. https://doi.org/10.1093/molbev/msi193
Jiang J, Jin W, Tu R, Han S, Ji Y et al (2020) Harvesting of microalgae Chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi. Waste Biomass Valorizat. https://doi.org/10.1007/s12649-020-00979-6
Johnson EJ (2014) Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev 72:605–612. https://doi.org/10.1111/nure.12133
Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534. https://doi.org/10.1007/s00253-009-2133-2
Kalupahana NS, Claycombe KJ, Moustaid-Moussa N (2011) (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2:304–316. https://doi.org/10.3945/an.111.000505
Kato Y, Fujihara Y, Vavricka CJ, Chang J-S, Hasunuma T et al (2019) Light/dark cycling causes delayed lipid accumulation and increased photoperiod-based biomass yield by altering metabolic flux in oleaginous Chlamydomonas sp. Biotechnol Biofuels 12:39. https://doi.org/10.1186/s13068-019-1380-4
Kehrein P, van Loosdrecht M, Osseweijer P, Garfí M, Dewulf J et al (2020) A critical review of resource recovery from municipal wastewater treatment plants – market supply potentials, technologies and bottlenecks. Environ Sci 6:877–910. https://doi.org/10.1039/C9EW00905A
Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x
Kim JK, Um BH, Kim TH (2012) Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean J Chem Eng 29:209–214. https://doi.org/10.1007/s11814-011-0169-3
Kim EJ, Kim S, Choi HG, Han SJ (2020) Co-production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic sea ice. Biotechnol Biofuels 13:1–13. https://doi.org/10.1186/s13068-020-1660-z
Kimura S, Nakajima M, Yumoto E, Miyamoto K, Yamane H et al (2020) Cytokinins affect the akinete-germination stage of a terrestrial filamentous cyanobacterium, Nostoc sp. HK-01. Plant Growth Regul. https://doi.org/10.1007/s10725-020-00636-x
Kohli GS, John U, Van Dolah FM, Murray SA (2016) Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. ISME J 10:1877–1890. https://doi.org/10.1038/ismej.2015.263
Kohli GS, Campbell K, John U, Smith KF, Fraga S et al (2017) Role of modular polyketide synthases in the production of polyether ladder compounds in ciguatoxin-producing Gambierdiscus polynesiensis and G. excentricus (Dinophyceae). J Eukaryot Microbiol 64:691–706. https://doi.org/10.1111/jeu.12405
Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. https://doi.org/10.1016/j.algal.2014.09.002
Kothari R, Pathak VV, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470. https://doi.org/10.1016/j.biortech.2012.03.121
Krohn BJ, McNeff CV, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresour Technol 102:94–100. https://doi.org/10.1016/j.biortech.2010.05.035
Kumar M, Prasanna R, Bidyarani N, Babu S, Mishra BK et al (2013) Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Sci Hortic 164:94–101. https://doi.org/10.1016/j.scienta.2013.09.014
Kumar RR, Rao PH, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:61. https://doi.org/10.3389/fenrg.2014.00061
Kumar AK, Sharma S, Shah E, Parikh BS, Patel A et al (2019a) Cultivation of Ascochloris sp. ADW007-enriched microalga in raw dairy wastewater for enhanced biomass and lipid productivity. Int J Environ Sci Technol 16:943–954. https://doi.org/10.1007/s13762-018-1712-0
Kumar N, Banerjee C, Kumar N, Jagadevan S (2019b) A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresour Technol 271:383–390. https://doi.org/10.1016/j.biortech.2018.09.073
Kumar AK, Sharma S, Dixit G, Shah E, Patel A (2020) Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system. Renew Energy 145:1620–1632. https://doi.org/10.1016/j.renene.2019.07.087
Labbé JI, Ramos-Suárez JL, Hernández-Pérez A, Baeza A, Hansen F (2017) Microalgae growth in polluted effluents from the dairy industry for biomass production and phytoremediation. J Environ Chem Eng 5:635–643. https://doi.org/10.1016/j.jece.2016.12.040
Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:1–12. https://doi.org/10.1186/1754-6834-4-34
Lauritano C, De Luca D, Ferrarini A, Avanzato C, Minio A et al (2017) De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Sci Rep 7:11701. https://doi.org/10.1038/s41598-017-12092-1
Lee SM, Kim JH, Cho HY, Joo H, Lee JH (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. J Korean Ind Eng Chem 20:517–521
Leite LDS, Hoffmann MT, Daniel LA (2019) Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. J Water Process Eng 31:100821. https://doi.org/10.1016/j.jwpe.2019.100821
Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuel 24:5235–5243. https://doi.org/10.1021/ef1008314
Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 35:40–49. https://doi.org/10.1016/j.biombioe.2010.08.035
Li P, Sakuragi K, Makino H (2019) Extraction techniques in sustainable biofuel production: a concise review. Fuel Process Technol 193:295–303. https://doi.org/10.1016/j.fuproc.2019.05.009
Li S, Hu T, Xu Y, Wang J, Chu R et al (2020) A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives. Renew Sust Energ Rev 131:110005. https://doi.org/10.1016/j.rser.2020.110005
Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014) Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers Manag 85:551–557. https://doi.org/10.1016/j.enconman.2014.04.097
Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193. https://doi.org/10.1016/S0176-1617(00)80189-3
Maroubo LA, Andrade DS, Caviglione JH, Lovato GM, Nagashima GT (2018) Potential outdoor cultivation of green microalgae based on response to changing temperatures and by combining with air temperature occurrence. Bioenergy Res 11:748–762. https://doi.org/10.1007/s12155-018-9931-2
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020
Matos ÂP (2017) The impact of microalgae in food science and technology. J Am Oil Chem Soc 94:1333–1350. https://doi.org/10.1007/s11746-017-3050-7
Mazur H, Konop A, Synak R (2001) Indole-3-acetic acid in the culture medium of two axenic green microalgae. J Appl Phycol 13:35–42
Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363. https://doi.org/10.1016/j.copbio.2011.12.001
Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N (2019) Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plan Theory 8:279
Meyer JM, Rödelsperger C, Eichholz K, Tillmann U, Cembella A et al (2015) Transcriptomic characterisation and genomic glimps into the toxigenic dinoflagellate Azadinium spinosum, with emphasis on polykeitde synthase genes. BMC Genomics 16:27. https://doi.org/10.1186/s12864-014-1205-6
Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348. https://doi.org/10.1016/j.biortech.2011.10.059
Mohan SV, Pandey A (2013) Biohydrogen production: an introduction. Biohydrogen 5:1–24. https://doi.org/10.1016/B978-0-444-59555-3.00001-5
Molino A, Mehariya S, Di Sanzo G, Larocca V, Martino M et al (2020) Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: role of key parameters, technological achievements and challenges. J CO2 Utilizat 36:196–209. https://doi.org/10.1016/j.jcou.2019.11.014
Molitor HR, Moore EJ, Schnoor JL (2019) Maximum CO2 utilization by nutritious microalgae. ACS Sustain Chem Eng 7:9474–9479. https://doi.org/10.1021/acssuschemeng.9b00656
Moraes L, Rosa GM, Cara IM, Santos LO, Morais MG et al (2020) Bioprocess strategies for enhancing the outdoor production of Nannochloropsis gaditana: an evaluation of the effects of pH on culture performance in tubular photobioreactors. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02373-x
Moreno Osorio JH, Del Mondo A, Pinto G, Pollio A, Frunzo L et al (2020) Nutrient removal efficiency of green algal strains at high phosphate concentrations. Water Sci Technol 80:1832–1843. https://doi.org/10.2166/wst.2019.431
Mubarak M, Shaija A, Suchithra TV (2019) Flocculation: an effective way to harvest microalgae for biodiesel production. J Environ Chem Eng 7:103221. https://doi.org/10.1016/j.jece.2019.103221
Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B et al (2018) Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol Fertil Soils 54:27–40. https://doi.org/10.1007/s00374-017-1234-9
Muradov N, Taha M, Miranda AF, Wrede D, Kadali K et al (2015) Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels 8. https://doi.org/10.1186/s13068-015-0210-6
Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM et al (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830. https://doi.org/10.1016/j.biotechadv.2010.07.001
Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56. https://doi.org/10.1016/j.jbiotec.2010.07.030
Nagarajan D, Lee D-J, Chen C-Y, Chang J-S (2020) Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol 302:122817. https://doi.org/10.1016/j.biortech.2020.122817
Nethravathy MU, Mehar JG, Mudliar SN, Shekh AY (2019) Recent advances in microalgal bioactives for food, feed, and healthcare products: commercial potential, market space, and sustainability. Compr Rev Food Sci Food Saf 18:1882–1897. https://doi.org/10.1111/1541-4337.12500
Ngamsirisomsakul M, Reungsang A, Liao Q, Kongkeitkajorn MB (2019) Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis. Renew Energy 141:482–492. https://doi.org/10.1016/j.renene.2019.04.008
Nguyen LN, Truong MV, Nguyen AQ, Johir MAH, Commault AS et al (2020) A sequential membrane bioreactor followed by a membrane microalgal reactor for nutrient removal and algal biomass production. Environ Sci 6:189–196. https://doi.org/10.1039/C9EW00851A
Nogueira SMS, Souza Junior J, Maia HD, Saboya JPS, Farias WRL (2018) Use of Spirulina platensis in treatment of fish farming wastewater. Rev Ciênc Agron 49:599–606
Noraini MY, Ong HC, Badrul MJ, Chong WT (2014) A review on potential enzymatic reaction for biofuel production from algae. Renew Sust Energ Rev 39:24–34. https://doi.org/10.1016/j.rser.2014.07.089
Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556. https://doi.org/10.1023/A:1008173807143
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Abomohra AEF (2020) Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-09534-1
Osorio-Fierros A, Cronin K, Ring D, Méndez-Zavala A, Morales-Oyervides L et al (2017) Influence of granulation process parameters on food tablet properties formulated using natural powders (Opuntia ficus and Chlorella spp.). Powder Technol 317:281–286. https://doi.org/10.1016/j.powtec.2017.04.057
Paerl HW, Bland PT (1982) Localized tetrazolium reduction in relation to N2; fixation, CO2 fixation, and H2 uptake in aquatic filamentous cyanobacteria. Appl Environ Microbiol 43:218
Panchangam SC, Janakiraman K (2015) Decolorization of aqueous coffee and tea infusions by chemical coagulation. Desalin Water Treat 53:119–125. https://doi.org/10.1080/19443994.2013.860401
Pangestuti R, Kim S-K (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3:255–266. https://doi.org/10.1016/j.jff.2011.07.001
Pareek A, Dom R, Gupta J, Chandran J, Adepu V et al (2020) Insights into renewable hydrogen energy: recent advances and prospects. Mater Sci Energy Technol 3:319–327. https://doi.org/10.1016/j.mset.2019.12.002
Paul JH (1982) Isolation and characterization of a Chlamydomonas l-asparaginase. Biochem J 203:109–115. https://doi.org/10.1042/bj2030109
Peng X, Bruns MA (2019) Development of a nitrogen-fixing cyanobacterial consortium for surface stabilization of agricultural soils. J Appl Phycol 31:1047–1056. https://doi.org/10.1007/s10811-018-1597-9
Peng L, Lan F, Lan CQ (2020) Biofuels from microalgae and seaweeds. Green Energy Sustainability 2012:185–218. https://doi.org/10.1002/9781119152057.ch9
Peralta-Ruiz Y, González-Delgado AD, Kafarov V (2013) Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Appl Energy 101:226–236. https://doi.org/10.1016/j.apenergy.2012.06.065
Posadas E, Bochon S, Coca M, García-González MC, García-Encina PA et al (2014) Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol 26:2335–2345. https://doi.org/10.1007/s10811-014-0263-0
Prasanna R, Nain L, Tripathi R, Gupta V, Chaudhary V et al (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria – possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194. https://doi.org/10.1002/jobm.200700199
Prasanna R, Adak A, Verma S, Bidyarani N, Babu S et al (2015a) Cyanobacterial inoculation in rice grown under flooded and SRI modes of cultivation elicits differential effects on plant growth and nutrient dynamics. Ecol Eng 84:532–541. https://doi.org/10.1016/j.ecoleng.2015.09.033
Prasanna R, Babu S, Bidyarani N, Kumar A, Triveni S et al (2015b) Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton. Exp Agric 51:42–65. https://doi.org/10.1017/S0014479714000143
Prasanna R, Kanchan A, Kaur S, Ramakrishnan B, Ranjan K et al (2016) Chrysanthemum growth gains from beneficial microbial interactions and fertility improvements in soil under protected cultivation. Hortic Plant J 2:229–239. https://doi.org/10.1016/j.hpj.2016.08.008
Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S et al (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89. https://doi.org/10.1016/j.micres.2014.12.011
Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. https://doi.org/10.1007/s00253-004-1647-x
Quintero-Dallos V, García-Martínez JE, Contreras-Ropero JF, Barajas-Solano A, Barajas-Ferrerira C et al (2019) Vinasse as a sustainable medium for the production of Chlorella vulgaris UTEX 1803 Preprints, 2019060244. https://doi.org/10.20944/preprints201906.0244.v1
Rachidi F, Benhima R, Sbabou L, El Arroussi H (2020) Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution. Biotechnol Rep 25:e00426. https://doi.org/10.1016/j.btre.2020.e00426
Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523. https://doi.org/10.1007/s00253-006-0777-8
Ramirez NNV, Farenzena M, Trierweiler JO (2014) Growth of microalgae Scenedesmus sp in ethanol vinasse. Braz Arch Biol Technol 57:630–635
Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem 277:128–134. https://doi.org/10.1016/j.foodchem.2018.10.066
Rashad S, El-Hassanin AS, Mostafa SSM, El-Chaghaby GA (2019) Cyanobacteria cultivation using olive milling wastewater for bio-fertilization of celery plant. Global J Environ Sci Manage 5:167–174. https://doi.org/10.22034/gjesm.2019.02.03
Ren HY, Kong F, Cui Z, Zhao L, Ma J et al (2019) Cogeneration of hydrogen and lipid from stimulated food waste in an integrated dark fermentative and microalgal bioreactor. Bioresour Technol 287:121468–121468. https://doi.org/10.1016/j.biortech.2019.121468
Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R et al (2016) Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res 23:6608–6620. https://doi.org/10.1007/s11356-015-5884-6
Renuka N, Guldhe A, Prasanna R, Singh P, Bux F (2018) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36:1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
Riccio G, De Luca D, Lauritano C (2020) Monogalactosyldiacylglycerol and sulfolipid synthesis in microalgae. Drugs 18:50237. https://doi.org/10.3390/md18050237
Richmond A (2004) Handbook of microalgae culture biotechnology applied phycology. Blackwell Science Ltd, Hoboken
Roberti R, Galletti S, Burzi PL, Righini H, Cetrullo S et al (2015) Induction of defence responses in zucchini (Cucurbita pepo) by Anabaena sp. water extract. Biol Control 82:61–68. https://doi.org/10.1016/j.biocontrol.2014.12.006
Romaidi HM, Kholifah K, Maulidiyah A, Putro SP et al (2018) Lipid production from tapioca wastewater by culture of Scenedesmus sp. with simultaneous BOD, COD and nitrogen removal. J Phys Conf Ser 1025:012075. https://doi.org/10.1088/1742-6596/1025/1/012075
Rumin J, Nicolau E, Junior RGO, Fuentes-Grünewald C, Picot L (2020) Analysis of scientific research driving microalgae market opportunities in Europe. Drugs 18. https://doi.org/10.3390/md18050264
Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P et al (2015) Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol:1–13. https://doi.org/10.1007/s00253-015-6908-3
Sánchez EP, Travieso L (1993) Anaerobic digestion of Chlorella vulgaris for energy production. Resour Conserv Recycl 9:127–132
Sánchez-Bayo A, López-Chicharro D, Morales V, Espada JJ, Puyol D et al (2020) Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: a biorefinery approach. Renew Energy 146:188–195. https://doi.org/10.1016/j.renene.2019.06.148
Saranya D, Shanthakumar S (2019) Green microalgae for combined sewage and tannery effluent treatment: performance and lipid accumulation potential. J Environ Manag 241:167–178. https://doi.org/10.1016/j.jenvman.2019.04.031
Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27. https://doi.org/10.1016/j.renene.2011.06.045
Sathasivam R, Ki J-S (2018) A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Drugs 16:26. https://doi.org/10.3390/md16010026
Sayedin F, Kermanshahi-pour A, He QS, Tibbetts SM, Lalonde CGE et al (2020) Microalgae cultivation in thin stillage anaerobic digestate for nutrient recovery and bioproduct production. Algal Res 47:101867. https://doi.org/10.1016/j.algal.2020.101867
Schwede S, Rehman ZU, Gerber M, Theiss C, Span R (2013) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour Technol 143:505–511. https://doi.org/10.1016/j.biortech.2013.06.043
Selvan ST, Govindasamy B, Muthusamy S, Ramamurthy D (2019) Exploration of green integrated approach for effluent treatment through mass culture and biofuel production from unicellular alga, Acutodesmus obliquus RDS01. Int J Phytoremediation 21:1305–1322. https://doi.org/10.1080/15226514.2019.1633255
Serrà A, Artal R, García-Amorós J, Gómez E, Philippe L (2020) Circular zero-residue process using microalgae for efficient water decontamination, biofuel production, and carbon dioxide fixation. Chem Eng J 388:124278. https://doi.org/10.1016/j.cej.2020.124278
Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep 15:63–69. https://doi.org/10.1016/j.btre.2017.06.001
Sharma P, Sharma N (2017) Industrial and biotechnological applications of algae: a review. J Adv Plant Biol 1:01–25. https://doi.org/10.14302/issn.2638-4469.japb-17-1534
Shevchenko GV, Karavaiko NN, Selivankina SY, Zubkova NK, Kupriyanova EV et al (2014) Possible involvement of cyanobacteria in the formation of plant hormonal system. Russ J Plant Physiol 61:154–159. https://doi.org/10.1134/S1021443714020149
Sigamani S, Ramamurthy D, Natarajan H (2016) A review on potential biotechnological applications of microalgae. J Appl Pharm Sci 6:179–184. https://doi.org/10.7324/JAPS.2016.60829
Silva HR, Guedes CLB, Andrade DS (2014) Fotobiorreator tubular e vertical em polietileno de baixa densidade (PEBD) para o cultivo de microalgas. Brasil Patent
Silva HR, Prete CEC, Zambrano F, de Mello VH, Tischer CA et al (2016) Combining glucose and sodium acetate improves the growth of Neochloris oleoabundans under mixotrophic conditions. AMB Express 6:1–11. https://doi.org/10.1186/s13568-016-0180-5
Silva LML, Santiago AF, Silva GA, Castro ALP, Bastos LS et al (2020) Optimization and scale-up of an LED-illuminated microalgal photobioreactor for wastewater treatment. Water Sci Technol 80:2352–2361. https://doi.org/10.2166/wst.2020.058
Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. https://doi.org/10.1016/j.agee.2011.01.017
Singh D, Sharma D, Soni SL, Sharma S, Kumar Sharma P et al (2020a) A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553–116553. https://doi.org/10.1016/j.fuel.2019.116553
Singh J, Jain D, Agarwal P, Singh RP (2020b) Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem 95:223–234. https://doi.org/10.1016/j.procbio.2020.02.012
Sipaúba-Tavares LH, Scardoeli-Truzzi B, Fenerick DC, Tedesque MG (2019) Comparison of photoautotrophic and mixotrophic cultivation of microalgae Messastrum gracile (Chlorophyceae) in alternative culture media. Braz J Biol. https://doi.org/10.1590/1519-6984.226548
Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia JL et al (2011) Photoautotrophic production of lipids by some chlorella strains. Mar Biotechnol 13:928–941. https://doi.org/10.1007/s10126-010-9355-2
Skulberg OM (2004) Bioactive chemicals in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford
Smithers G (2016) Food science – yesterday, today, and tomorrow. Elsevier, London
Soares AT, da Costa DC, Vieira AAH, Antoniosi Filho NR (2019) Analysis of major carotenoids and fatty acid composition of freshwater microalgae. Heliyon 5:e01529. https://doi.org/10.1016/j.heliyon.2019.e01529
Song C, Qiu Y, Li S, Liu Z, Chen G et al (2019) A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater. J Clean Prod 237:117864. https://doi.org/10.1016/j.jclepro.2019.117864
Sorigué D, Légeret B, Cuiné S, Blangy S, Moulin S et al (2017) An algal photoenzyme converts fatty acids to hydrocarbons. Science 357:903–907. https://doi.org/10.1126/science.aan6349
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. https://doi.org/10.1263/jbb.101.87
Srinuanpan S, Cheirsilp B, Kassim MA (2020) Oleaginous microalgae cultivation for biogas upgrading and phytoremediation of wastewater. Elsevier, London. https://doi.org/10.1016/b978-0-12-817536-1.00005-9
Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107. https://doi.org/10.1016/j.bbadis.2004.12.006
Stirk WA, Ördög V, Van Staden J, Jäger K (2002) Cytokinin- and auxin-like activity in cyanophyta and microalgae. J Appl Phycol 14:215–221
Stirk WA, Ördög V, Novák O, Rolčík J, Strnad M et al (2013) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467. https://doi.org/10.1111/jpy.12061
Supraja KV, Behera B, Balasubramanian P (2020a) Performance evaluation of hydroponic system for co-cultivation of microalgae and tomato plant. J Clean Prod 272:122823. https://doi.org/10.1016/j.jclepro.2020.122823
Supraja KV, Bunushree B, Balasubramanian P (2020b) Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. Ind Crop Prod 151:112453. https://doi.org/10.1016/j.indcrop.2020.112453
Sydney EB, Neto CJD, de Carvalho JC, Vandenberghe LPDS, Sydney ACN et al (2019) Microalgal biorefineries: integrated use of liquid and gaseous effluents from bioethanol industry for efficient biomass production. Bioresour Technol 292:Article. https://doi.org/10.1016/j.biortech.2019.121955
Tango MD, Calijuri ML, Assemany PP, De Aguiar Do Couto E (2018) Microalgae cultivation in agro-industrial effluents for biodiesel application: Effects of the availability of nutrients. Water Sci Technol 78:57–68. https://doi.org/10.2166/wst.2018.180
Tatel NJ, Madrazo C (2020) Bioethanol production from microalgae Chlorella sorokiniana via simultaneous saccharification and fermentation. IOP Conf Ser 778. https://doi.org/10.1088/1757-899X/778/1/012039
Tiwari ON, Bhunia B, Mondal A, Gopikrishna K, Indrama T (2019) System metabolic engineering of exopolysaccharide-producing cyanobacteria in soil rehabilitation by inducing the formation of biological soil crusts: a review. J Clean Prod 211:70–82. https://doi.org/10.1016/j.jclepro.2018.11.188
Tonhato Junior A, Hasan SDM, Sebastien NY (2019) Optimization of coagulation/flocculation treatment of brewery wastewater employing organic flocculant based of vegetable tannin. Water Air Soil Pollut 230:202. https://doi.org/10.1007/s11270-019-4251-5
Uggetti E, Sialve B, Hamelin J, Bonnafous A, Steyer J-P (2018) CO2 addition to increase biomass production and control microalgae species in high rate algal ponds treating wastewater. J CO2 Utilizat 28:292–298. https://doi.org/10.1016/j.jcou.2018.10.009
Umamaheswari J, Shanthakumar S (2016) Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol 15:265–284. https://doi.org/10.1007/s11157-016-9397-7
Valizadeh K, Davarpanah A (2020) Design and construction of a micro-photo bioreactor in order to dairy wastewater treatment by micro-algae: parametric study. Energy Sour Pt A 42:611–624. https://doi.org/10.1080/15567036.2019.1588425
Verfaillie A, Blockx J, Praveenkumar R, Thielemans W, Muylaert K (2020) Harvesting of marine microalgae using cationic cellulose nanocrystals. Carbohydr Polym 240:116165. https://doi.org/10.1016/j.carbpol.2020.116165
Vingiani GM, De Luca P, Ianora A, Dobson ADW, Lauritano C (2019) Microalgal enzymes with biotechnological applications. Drugs 17:459. https://doi.org/10.3390/md17080459
Vishwakarma J, Sirisha VL (2020) Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Appl Microbiol Biotechnol 104:6299–6314. https://doi.org/10.1007/s00253-020-10653-5
Vu MT, Vu HP, Nguyen LN, Semblante GU, Johir MAH et al (2020) A hybrid anaerobic and microalgal membrane reactor for energy and microalgal biomass production from wastewater. Environ Technol Innov 19:100834. https://doi.org/10.1016/j.eti.2020.100834
Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G et al (2010) Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem 48:407–416. https://doi.org/10.1016/j.plaphy.2010.03.008
Wang X, Gao S, Zhang Y, Zhao Y, Cao W (2017) Performance of different microalgae-based technologies in biogas slurry nutrient removal and biogas upgrading in response to various initial CO2 concentration and mixed light-emitting diode light wavelength treatments. J Clean Prod 166:408–416. https://doi.org/10.1016/j.jclepro.2017.08.071
Wang S-K, Wang X, Miao J, Tian Y-T (2018) Tofu whey wastewater is a promising basal medium for microalgae culture. Bioresour Technol 253:79–84. https://doi.org/10.1016/j.biortech.2018.01.012
Wei H, Shi Y, Ma X, Pan Y, Hu H et al (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174. https://doi.org/10.1186/s13068-017-0858-1
Xin Y, Lu Y, Lee Y-Y, Wei L, Jia J et al (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10:1523–1539. https://doi.org/10.1016/j.molp.2017.10.011
Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ et al (2018) Properties and biotechnological applications of acyl-CoA: diacylglycerol acyltransferase and phospholipid:diacylglycerol acyltransferase from terrestrial plants and microalgae. Lipids 53:663–688. https://doi.org/10.1002/lipd.12081
Xu M, Xue Z, Sun S, Zhao C, Liu J et al (2020) Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification. Bioresour Technol 314:123766–123766. https://doi.org/10.1016/j.biortech.2020.123766
Xue Z, Yu Y, Yu W, Gao X, Zhang Y et al (2020) Development prospect and preparation technology of edible oil from microalgae. Front Mar Sci 7. https://doi.org/10.3389/fmars.2020.00402
Yang C-F, Ding Z-F, Zhang K-C (2008) Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. World J Microbiol Biotechnol 24:2919–2925. https://doi.org/10.1007/s11274-008-9833-0
Yin D, Wang Z, Wen X, Ding Y, Hou X et al (2019) Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium. Environ Sci Pollut Res 26:32902–32910. https://doi.org/10.1007/s11356-019-06287-4
Yin Z, Zhu L, Li S, Hu T, Chu R et al (2020) A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol 301:122804–122804. https://doi.org/10.1016/j.biortech.2020.122804
Yoon MH, Lee YW, Lee CH, Seo YB (2012) Simultaneous production of bio-ethanol and bleached pulp from red algae. Bioresour Technol 126:198–201. https://doi.org/10.1016/j.biortech.2012.08.102
Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738. https://doi.org/10.1016/j.apenergy.2011.08.017
Zhang H, Yin W, Ma D, Liu X, Xu K et al (2020) Phytohormone supplementation significantly increases fatty acid content of Phaeodactylum tricornutum in two-phase culture. J Appl Phycol. https://doi.org/10.1007/s10811-020-02074-8
Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E et al (2014) Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour Technol 161:423–430. https://doi.org/10.1016/j.biortech.2014.03.079
Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chem Eng J 299:332–341. https://doi.org/10.1016/j.cej.2016.04.118
Zhu L, Wang Z, Takala J, Hiltunen E, Qin L et al (2013) Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Technol 137:318–325. https://doi.org/10.1016/j.biortech.2013.03.144
Zhu S, Feng S, Xu Z, Qin L, Shang C et al (2019) Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal. Bioresour Technol 285:121353. https://doi.org/10.1016/j.biortech.2019.121353
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Andrade, D.S. et al. (2021). Microalgae: Cultivation, Biotechnological, Environmental, and Agricultural Applications. In: Maddela, N.R., García Cruzatty, L.C., Chakraborty, S. (eds) Advances in the Domain of Environmental Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-8999-7_23
Download citation
DOI: https://doi.org/10.1007/978-981-15-8999-7_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-8998-0
Online ISBN: 978-981-15-8999-7
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)