Skip to main content

Rhizobium Diversity Is the Key to Efficient Interplay with Phaseolus vulgaris. Case of Study of Southern Ecuador

  • Chapter
  • First Online:

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Plants acquire different combined forms of nitrogen by addition of ammonia and/or nitrate fertilizer or manure to the soil, during organic matter decomposition, by the conversion of nitrogen into different compounds, or by biological nitrogen fixation (BNF). Diverse soil bacteria collectively called rhizobia are capable to fix N2 from the atmosphere through symbiosis with legume plants. The N2 fixed by the legume crops represents a renewable source of nitrogen for agricultural soils, turning symbiotic nitrogen fixation (SNF) in a natural process of significant importance in world agriculture. Within the legumes carrying out this process, common bean (Phaseolus vulgaris L.) constitutes a staple, being the most important grain legume worldwide, especially for developing countries. However, P. vulgaris is a low nitrogen fixer compared with other legumes, mainly attributed to the presence of high but inefficient diversity of indigenous rhizobia in soil, increasing the promiscuity of bean genotypes and lack of response under field conditions. Rhizobia diversity has been extensively studied. Polyphasic taxonomy and recently the average nucleotide identity approach have allowed to discover about 117 so-called Rhizobium species and the real genetic differences of microsymbionts in ecosystems around the world. Nevertheless, phylogenomic, ecological, and population genetic criteria to delineate biologically meaningful species in interplay with their host are still needed. Therefore, understanding genotypic variabilities between bean genotypes and Rhizobium strains contributes to achieve an efficient interaction, increase plant parameters, nitrogen fixation, and yields of common bean. Here, we discuss about the most recent studies on Rhizobium diversity linked to P. vulgaris in the American continent as the center of origin/diversification and outside this continent. The abiotic and biotic factors mediate the efficiency of the interaction, with special emphasis in the promiscuity of common bean as a constraint to achieve high nitrogen fixation rates and we show a case of study at southern Ecuador where genotypic variability among local bean genotypes and native Rhizobium strains was assessed to seek the efficiency of symbiosis based on its diversity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari D, Itoh K, Suyama K (2013) Genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in Nepal. Plant Soil 368(1):341–353

    Article  CAS  Google Scholar 

  • Aguilar OM, López MV, Riccillo PM (2001) The diversity of rhizobia nodulating beans in Northwest Argentina as a source of more efficient inoculant strains. J Biotechnol 91(2–3):181–188

    Article  CAS  PubMed  Google Scholar 

  • Aguilar OM, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci 101(37):13548–13553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 29–44

    Chapter  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47(4):996–1006

    Article  CAS  PubMed  Google Scholar 

  • Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68(8):4025–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aserse AA, Räsänen LA, Assefa F, Hailemariam A, Lindström K (2012) Phylogeny and genetic diversity of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. Syst Appl Microbiol 35(2):120–131

    Article  PubMed  Google Scholar 

  • Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K (2017) Draft genome sequence of type strain HBR26(T) and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 12:14–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40(7):1733–1740

    Article  CAS  Google Scholar 

  • Baginsky C, Brito B, Scherson R, Pertuzé R, Seguel O, Cañete A, Araneda C, Johnson WE (2015) Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Arch Microbiol 197(3):419–429

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Bernal G, Graham PH (2001) Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuador, and comparisons with Mexican bean rhizobia. Can J Microbiol 47(6):526–534

    Article  CAS  PubMed  Google Scholar 

  • Brito LFD, Pacheco RS, Filho BFDS, Ferreira EPDB, Straliotto R, Araújo AP (2015) Response of common bean to Rhizobium inoculation and supplemental mineral nitrogen in two Brazilian biomes. Rev Bras Ciênc Solo 39(4):981–992

    Article  CAS  Google Scholar 

  • Cao Y, Wang E-T, Zhao L, Chen W-M, Wei G-H (2014) Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol Biochem 78:128–137

    Article  CAS  Google Scholar 

  • Chen WF (2019) Geographical distribution of Rhizobia. In: Wang ET, Tian CF, Chen WF, Young JPW, Chen WX (eds) Ecology and evolution of Rhizobia: principles and applications. Springer, Singapore, pp 181–209

    Chapter  Google Scholar 

  • Clermont D, Diard S, Bouchier C, Vivier C, Bimet F, Motreff L, Welker M, Kallow W, Bizet C (2009) Microbacterium binotii sp. nov., isolated from human blood. Int J Syst Evol Microbiol 59(5):1016–1022

    Google Scholar 

  • Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M (2017) Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 67(10):3937–3945

    Article  CAS  PubMed  Google Scholar 

  • da Conceição J, de Almeida Leite ER, do Amaral Bastos R, da Silva Aragão OO, Araújo AP (2018) Co-inoculation of Bradyrhizobium stimulates the symbiosis efficiency of Rhizobium with common bean. Plant Soil 425(1–2):201–215

    Google Scholar 

  • da Silva K, Florentino LA, da Silva KB, de Brandt E, Vandamme P, de Souza Moreira FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35(3):175–182

    Article  PubMed  CAS  Google Scholar 

  • Dall'Agnol RF, Bournaud C, de Faria SM, Béna G, Moulin L, Hungria M (2017) Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol Ecol 93(4)

    Google Scholar 

  • Daryanto S, Fu B, Zhao W, Wang S, Jacinthe P-A, Wang L (2020) Ecosystem service provision of grain legume and cereal intercropping in Africa. Agric Syst 178:102761

    Article  Google Scholar 

  • de Sá NMH, Scotti M, Paiva E, Franco A, Dobereiner J (1993) Selection and characterization of Rhizobium spp. strains stable and capable in fixing nitrogen in bean (Phaseolus vulgaris L.). Embrapa Milho e Sorgo-Artigo em periódico indexado (ALICE)

    Google Scholar 

  • Díaz-Alcántara C-A, Ramírez-Bahena M-H, Mulas D, García-Fraile P, Gómez-Moriano A, Peix A, Velázquez E, González-Andrés F (2014) Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst Appl Microbiol 37(2):149–156

    Article  PubMed  Google Scholar 

  • Diouf A, de Lajudie P, Neyra M, Kersters K, Gillis M, Martinez-Romero E, Gueye M (2000) Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int J Syst Evol Microbiol 50(Pt 1):159–170

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol 57:621–629

    Article  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Upadhyaya HD, Mengoni A, Galardini M, Bazzicalupo M, Biondi EG, Hungria M, Kaschuk G, Blair MW, Ortiz R (2015) Chapter one - advances in host plant and Rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. In: Sparks DL (ed) Advances in agronomy, vol 129. Academic Press, pp 1–116

    Google Scholar 

  • Eardly BD, Young JP, Selander RK (1992) Phylogenetic position of Rhizobium sp. strain or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol 58(6):1809–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elizalde-Díaz JP, Hernández-Lucas I, Medina-Aparicio L, Dávalos A, Leija A, Alvarado-Affantranger X, García-García JD, Hernández G, Santos A G-d L (2019) Rhizobium tropici CIAT 899 copA gene plays a fundamental role in copper tolerance in both free life and symbiosis with Phaseolus vulgaris. Microbiology 165(6):651–661

    Article  PubMed  CAS  Google Scholar 

  • FAO (2020) FAOstat. http://www.faostat.fao.org

  • Figueiredo M, Martinez C, Burity H, Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–1193

    Article  CAS  Google Scholar 

  • Flores-Félix JD, Sánchez-Juanes F, García-Fraile P, Valverde A, Mateos PF, Gónzalez-Buitrago JM, Velázquez E, Rivas R (2019) Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Syst Appl Microbiol 42(2):240–247

    Article  PubMed  Google Scholar 

  • García-Fraile P, Mulas-García D, Peix A, Rivas R, González-Andrés F, Velázquez E (2010) Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol 56(8):657–666

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting Bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes DF, da Silva Batista JS, Torres AR, de Souza Andrade D, Galli-Terasawa LV, Hungria M (2012) Two-dimensional proteome reference map of Rhizobium tropici PRF 81 reveals several symbiotic determinants and strong resemblance with agrobacteria. Proteomics 12(6):859–863

    Article  CAS  PubMed  Google Scholar 

  • Gomes DF, Ormeño-Orrillo E, Hungria M (2015) Biodiversity, symbiotic efficiency, and genomics of Rhizobium tropici and related species. Biol Nitr Fix:747–756

    Google Scholar 

  • González V, Santamaría RI, Bustos P, Pérez-Carrascal OM, Vinuesa P, Juárez S, Martínez-Flores I, Cevallos M, Brom S, Martínez-Romero E, Romero D (2019) Phylogenomic Rhizobium species are structured by a continuum of diversity and genomic clusters. Front Microbiol 10:910

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Ranalli P (1997) Common bean (Phaseolus vulgaris L.). Field Crop Res 53(1):131–146

    Article  Google Scholar 

  • Gunnabo AH, Geurts R, Wolde-Meskel E, Degefu T, Giller KE, van Heerwaarden J (2019) Genetic interaction studies reveal superior performance of Rhizobium tropici CIAT899 on a range of diverse east African common bean (Phaseolus vulgaris L.) genotypes. Appl Environ Microbiol 85(24)

    Google Scholar 

  • Herrera-Cervera JA, Caballero-Mellado J, Laguerre G, Tichy H-V, Requena N, Amarger N, Martínez-Romero E, Olivares J, Sanjuan J (1999) At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30(1):87–97

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1):1–18

    Article  CAS  Google Scholar 

  • Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect Symbiosis? Biol Nitr Fix:1009–1024

    Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65(2):151–164

    Article  Google Scholar 

  • Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39(2):88–93

    Article  Google Scholar 

  • Huo Y, Tong W, Wang J, Wang F, Bai W, Wang E, Shi P, Chen W, Wei G (2019) Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China. Int J Syst Evol Microbiol 69(7):2049–2056

    Article  CAS  PubMed  Google Scholar 

  • Ipsilantis I, Lotos L, Tsialtas IT (2019) Diversity and nodulation effectiveness of rhizobia and mycorrhizal presence in climbing dry beans grown in Prespa lakes plain, Greece. Arch Microbiol 201(9):1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Jehangir I, Mir M, Bhat M, Ahangar M (2017) Biofertilizers an approach to sustainability in agriculture: a review. Int J Pure Appl Biosci 5:327–334

    Article  Google Scholar 

  • Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF (2015) Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant-Microbe Interact 28(12):1338–1352

    Article  CAS  PubMed  Google Scholar 

  • Jordan DC (1982) NOTES: transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Evol Microbiol 32(1):136–139

    Google Scholar 

  • Karaca Ü, Uyanöz R (2012) Effectiveness of native Rhizobium on nodulation and growth properties of dry bean (Phaseolus vulgaris L.). Afr J Biotechnol 11(37):8986–8991

    Google Scholar 

  • Kawaka F, Dida MM, Opala PA, Ombori O, Maingi J, Osoro N, Muthini M, Amoding A, Mukaminega D, Muoma J (2014) Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of Western Kenya. Int Scholar Res Notice 2014

    Google Scholar 

  • Kawaka, F., H. Makonde, M. Dida, P. Opala, O. Ombori, J. Maingi and J. Muoma (2018). "Genetic diversity of symbiotic bacteria nodulating common bean (Phaseolus vulgaris) in western Kenya." PLoS One 13(11): e0207403–e0207403

    Google Scholar 

  • Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM, Njeru EM (2018) Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front Microbiol 9:968

    Article  PubMed  PubMed Central  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308

    Chapter  Google Scholar 

  • Kumar MS, Reddy GC, Phogat M, Korav S (2018) Role of bio-fertilizers towards sustainable agricultural development: a review. J Pharm Phytochem 7:1915–1921

    CAS  Google Scholar 

  • Leite J, Passos SR, Simões-Araújo JL, Rumjanek NG, Xavier GR, Zilli JÉ (2018) Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Braz J Microbiol 49(4):703–713

    Article  CAS  PubMed  Google Scholar 

  • López-Guerrero MG, Ormeño-Orrillo E, Velázquez E, Rogel MA, Acosta JL, Gónzalez V, Martínez J, Martínez-Romero E (2012) Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 35(6):353–358

    Article  PubMed  Google Scholar 

  • López-López A, Rogel MA, Ormeno-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33(6):322–327

    Article  PubMed  Google Scholar 

  • Los FGB, Zielinski AAF, Wojeicchowski JP, Nogueira A, Demiate IM (2018) Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Curr Opin Food Sci 19:63–71

    Article  Google Scholar 

  • Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytology

    Google Scholar 

  • Martínez-Aguilar, L., C. Salazar-Salazar, R. D. Méndez, J. Caballero-Mellado, A. M. Hirsch, M. S. Vásquez-Murrieta and P. Estrada-de los Santos (2013). "Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris." Antonie Van Leeuwenhoek 104(6): 1063–1071

    Google Scholar 

  • Martínez-Romero E (1994) Recent developments in Rhizobium taxonomy. In: Graham PH, Sadowsky MJ, Vance CP (eds.) Symbiotic nitrogen fixation: proceedings of the 14th north American conference on symbiotic nitrogen fixation, July 25–29, 1993, University of Minnesota, St. Paul, Minnesota, USA. Springer, Dordrecht, pp 11–20

    Google Scholar 

  • Martínez-Romero E (2003) Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252(1):11–23

    Article  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41(3):417–426

    Article  PubMed  Google Scholar 

  • Mhamdi R, Jebara M, Aouani ME, Ghrir R, Mars M (1999) Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol Fertil Soils 28(3):313–320

    Article  Google Scholar 

  • Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26(3):193–205

    Article  CAS  Google Scholar 

  • Misra M, Sachan A, Sachan SG (2020) Current aspects and applications of biofertilizers for sustainable agriculture. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 445–473

    Chapter  Google Scholar 

  • Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX, Zhang XX, Mhamdi R (2014) Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 64(Pt_5):1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Mostasso L, Mostasso FL, Dias BG, Vargas MA, Hungria M (2002) Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crop Res 73(2–3):121–132

    Article  Google Scholar 

  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38(2):84–90

    Article  PubMed  Google Scholar 

  • Mulas D, García-Fraile P, Carro L, Ramírez-Bahena M-H, Casquero P, Velázquez E, González-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43(11):2283–2293

    Article  CAS  Google Scholar 

  • Mwenda GM, O’Hara GW, De Meyer SE, Howieson JG, Terpolilli JJ (2018) Genetic diversity and symbiotic effectiveness of Phaseolus vulgaris-nodulating rhizobia in Kenya. Syst Appl Microbiol 41(4):291–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Naveed M, Mehboob I, Hussain MB, Zahir ZA (2015) Perspectives of Rhizobial inoculation for sustainable crop production. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 209–239

    Chapter  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13:735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H, Mora J, Martínez-Romero J, Martínez-Romero E (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38(4):287–291

    Article  PubMed  Google Scholar 

  • Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34(1–3):17–42

    Article  Google Scholar 

  • Peoples M, Brockwell J, Herridge D, Rochester I, Alves B, Urquiaga S, Boddey R, Dakora F, Bhattarai S, Maskey S (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17

    Article  CAS  Google Scholar 

  • Pérez-Ramı́rez NO, Rogel MA, Wang E, Castellanos JZ, Martı́nez-Romero E (1998) Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 26(4):289–296

    Article  Google Scholar 

  • Preissel S, Reckling M, Schläfke N, Zander P (2015) Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crop Res 175:64–79

    Article  Google Scholar 

  • Rajnovic I, Ramírez-Bahena M-H, Sánchez-Juanes F, González-Buitrago J-M, Kajic S, Peix Á, Velázquez E, Sikora S (2019) Phylogenetic diversity of rhizobia nodulating Phaseolus vulgaris in Croatia and definition of the symbiovar phaseoli within the species Rhizobium pisi. Syst Appl Microbiol 42(6):126019

    Article  PubMed  Google Scholar 

  • Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58(Pt 11):2484–2490

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Puebla ST, Hernández MAR, Ruiz GG, Ormeño-Orrillo E, Martinez-Romero JC, Servín-Garcidueñas LE, Núñez-de la Mora A, Amescua-Villela G, Negrete-Yankelevich S, Martínez-Romero E (2019) Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid. Syst Appl Microbiol 42(3):373–382

    Article  PubMed  CAS  Google Scholar 

  • Remans R, Croonenborghs A, Torres Gutierrez R, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. In: Bakker PAHM, Raaijmakers JM, Bloemberg G et al (eds) New perspectives and approaches in plant growth-promoting Rhizobacteria research. Springer, Dordrecht, pp 341–351

    Chapter  Google Scholar 

  • Reza Golparvar A (2012) Genetic improvement of biological nitrogen fixation in common bean genotypes (Phaseolus vulgaris L.). Agric Conspec Sci 77(2):77–80

    Google Scholar 

  • Ribeiro RA, Ormeño-Orrillo E, Dall'Agnol RF, Graham PH, Martinez-Romero E, Hungria M (2013) Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol 164(7):740–748

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RA, Martins TB, Ormeno-Orrillo E, Marcon Delamuta JR, Rogel MA, Martinez-Romero E, Hungria M (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65(9):3162–3169

    Article  CAS  PubMed  Google Scholar 

  • Rodiño P, Santalla M, De Ron A, Drevon J-J (2010) Co-evolution and migration of bean and rhizobia in Europe. In: Lichtfouse E (ed) Sociology, organic farming, climate change and soil science, vol 3. Springer, Dordrecht, pp 171–188

    Chapter  Google Scholar 

  • Román-Ponce B, Jing Zhang Y, Soledad Vásquez-Murrieta M, Hua Sui X, Feng Chen W, Padilla JCA, Guo XW, Gao JL, Yan J, Wei GH, Wang ET (2016) Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 66(1):398–406

    Article  PubMed  CAS  Google Scholar 

  • Rouhrazi K, Khodakaramian G, Velázquez E (2016) Phylogenetic diversity of rhizobial species and symbiovars nodulating Phaseolus vulgaris in Iran. FEMS Microbiol Lett 363(5):fnw024

    Article  PubMed  CAS  Google Scholar 

  • Sánchez, A. C., R. T. Gutiérrez, R. C. Santana, A. R. Urrutia, M. Fauvart, J. Michiels and J. Vanderleyden (2014). "Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions." Eur J Soil Biol 62(0): 105–112

    Google Scholar 

  • Santos JO, Antunes JEL, Araújo ASF, Lyra MCCP, Gomes RLF, Lopes ACA, Figueiredo MVB (2011) Genetic diversity among native isolates of rhizobia from Phaseolus lunatus. Ann Microbiol 61(3):437–444

    Article  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2019) ACC deaminase-producing bacteria: a key player in alleviating abiotic stresses in plants. In: Kumar A, Meena VS (eds) Plant growth promoting Rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 267–291

    Chapter  Google Scholar 

  • Satyanarayana SDV, Krishna MSR, Pavan Kumar P, Jeereddy S (2018) In silico structural homology modeling of nif A protein of rhizobial strains in selective legume plants. J Genet Eng Biotechnol 16(2):731–737

    Article  PubMed  PubMed Central  Google Scholar 

  • Segovia L, Piñero D, Palacios R, Martínez-Romero E (1991) Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol 57(2):426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servín-Garcidueñas LE, Rogel MA, Ormeño-Orrillo E, Delgado-Salinas A, Martínez-Romero J, Sánchez F, Martínez-Romero E (2012) Genome sequence of Rhizobium sp. strain CCGE510, a symbiont isolated from nodules of the endangered wild bean Phaseolus albescens. Am Soc Microbiol

    Google Scholar 

  • Sessitsch A, Hardarson G, Akkermans ADL, De Vos WM (1997) Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Mol Ecol 6(7):601–608

    Article  CAS  Google Scholar 

  • Shamseldin A, Velázquez E (2020) The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review. World J Microbiol Biotechnol 36(63):63

    Article  PubMed  Google Scholar 

  • Shamseldin A, Werner D (2005) High salt and high pH tolerance of new isolated rhizobium etli strains from Egyptian soils. Curr Microbiol 50(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin A, Abdelkhalek A, Sadowsky MJ (2017) Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 71(2):91–109

    Article  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 14(13):4033–4050

    Article  CAS  PubMed  Google Scholar 

  • Slattery J, Pearce D, Slattery W (2004) Effects of resident rhizobial communities and soil type on the effective nodulation of pulse legumes. Soil Biol Biochem 36(8):1339–1346

    Article  CAS  Google Scholar 

  • Souza V, Eguiarte L, Avila G, Cappello R, Gallardo C, Montoya J, Piñero D (1994) Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos, Mexico. Appl Environ Microbiol 60(4):1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbi C, Delgado MJ, Girard L, Ramírez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76(13):4587–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanim MT, Chowdhury MMK, Bari L, Rahaman MM, Rahman SR, Rahman MM (2019) Genetic diversity of Rhizobium spp. isolated from soil samples of Bangladesh. Bangladesh J Microbiol 36(1):7–10

    Article  Google Scholar 

  • Tanveer A, Ikram RM, Ali HH (2019) Crop rotation: principles and practices. Agronomic Crops. Springer, Berlin, pp 1–12

    Book  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) Chapter 5 - What determines the efficiency of N2-fixing Rhizobium-legume symbioses? In: Poole RK (ed) Advances in microbial physiology, vol 60. Academic Press, pp 325–389

    Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57(1):19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong W, Li X, Huo Y, Zhang L, Cao Y, Wang E, Chen W, Tao S, Wei G (2018) Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst Appl Microbiol 41(4):300–310

    Article  CAS  PubMed  Google Scholar 

  • Torres-Gutiérrez R, Granda-Mora KI, Alvarado-Capó Y, Rodriguez AS, Mogollón NGS, Almeida JRD (2017) Genetic and phenotypic diversity of Rhizobium isolates from southern Ecuador. Ciência e Agrotecnol 41:634–647

    Article  CAS  Google Scholar 

  • Vadez V, Lasso J, Beck DP, Drevon JJ (1999) Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency. Euphytica 106(3):231–242

    Article  Google Scholar 

  • Valverde A, Velázquez E, Cervantes E, Igual JM, van Berkum P (2011) Evidence of an American origin for symbiosis-related genes in Rhizobium lusitanum. Appl Environ Microbiol 77(16):5665–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verástegui-Valdés MM, Zhang YJ, Rivera-Orduña FN, Cheng H-P, Sui XH, Wang ET (2014) Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico. Syst App Microbiol 37(8):605–612

    Article  CAS  Google Scholar 

  • Vieira RF, Mendes IC, Reis-Junior FB, Hungria M (2010) Symbiotic nitrogen fixation in tropical food grain legumes: current status. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer, Vienna, pp 427–472

    Chapter  Google Scholar 

  • Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B (2018) GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 9:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlassak KM, Luyten E, Verreth C, van Rhijn P, Bisseling T, Vanderleyden, J (1998) The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Mol Plant-Microbe Interact 11(5):383–392

    Google Scholar 

  • Voisin A-S, Salon C, Jeudy C, Warembourg F (2003) Root and nodule growth in Pisum sativum L. in relation to photosynthesis: analysis using 13C-labelling. Ann Bot 92(4):557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ET, Chen WX (2004) Estimation of biotic and abiotic factors that affect migration of rhizobia. In: Biological resources and migration. Springer, Berlin

    Google Scholar 

  • Wang F, Wang ET, Wu LJ, Sui XH, Li Y, Chen WX (2011) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 61(Pt 11):2582–2588

    Article  PubMed  Google Scholar 

  • Wang L, Cao Y, Wang ET, Qiao YJ, Jiao S, Liu ZS, Zhao L, Wei GH (2016) Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst Appl Microbiol 39(3):211–219

    Article  PubMed  Google Scholar 

  • Westermann D, Kolar J (1978) Symbiotic N2 (C2H2) fixation by bean 1. Crop Sci 18(6):986–990

    Article  CAS  Google Scholar 

  • Wielbo J, Podleśna A, Kidaj D, Podleśny J, Skorupska A (2015) The diversity of pea microsymbionts in various types of soils and their effects on plant host productivity. Microbes Environ 30(3):254–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Wobeng NBM, Banfield CC, Megueni C, Mapongmetsem PM, Dippold MA (2020) Impact of legumes on soil microbial activity and C cycle functions in two contrasting Cameroonian agro-ecological zones. Pedobiologia 81-82:150662

    Article  Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8

    Google Scholar 

  • Yadav BK, Akhtar MS, Panwar J (2015) Rhizospheric plant-microbe interactions: key factors to soil fertility and plant nutrition. In: Plant microbes symbiosis: applied facets. Springer, Berlin, pp 127–145

    Chapter  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Berlin

    Book  Google Scholar 

  • Yadegari M, Rahmani HA (2010) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting Rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5(9):792–799

    Google Scholar 

  • Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ (2017) Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 199(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191(5):415–424

    Article  CAS  PubMed  Google Scholar 

  • Zinga MK, Jaiswal SK, Dakora FD (2017) Presence of diverse rhizobial communities responsible for nodulation of common bean (Phaseolus vulgaris) in south African and Mozambican soils. FEMS Microbiol Ecol 93(2)

    Google Scholar 

  • Zurdo-Piñeiro JL, Velázquez E, Lorite MJ, Brelles-Mariño G, Schröder EC, Bedmar EJ, Mateos PF, Martínez-Molina E (2004) Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst Appl Microbiol 27(4):469–477

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roldán Torres-Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres-Gutiérrez, R., Granda-Mora, K.I., Bazantes Saltos, K.d.R., Robles-Carrión, Á.R. (2021). Rhizobium Diversity Is the Key to Efficient Interplay with Phaseolus vulgaris. Case of Study of Southern Ecuador. In: Maddela, N.R., García Cruzatty, L.C., Chakraborty, S. (eds) Advances in the Domain of Environmental Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-8999-7_19

Download citation

Publish with us

Policies and ethics