Skip to main content

Omnidirectional Autonomous Reentry Guidance Based on 3-D Analytical Glide Formulae Considering Influence of Earth’s Rotation

  • Chapter
  • First Online:
Steady Glide Dynamics and Guidance of Hypersonic Vehicle
  • 694 Accesses

Abstract

Common Aero Vehicle (CAV) is a high-L/D hypersonic vehicle gliding in the region of the Earth’s atmosphere with altitude of 20–100 km. CAV is sent into a sub-orbital trajectory by a launch vehicle. After separating from the launch vehicle, CAV reenters the atmosphere with initial Mach number of about 20. As the maximum L/D (L/Dmax) is up to 3, CAV can travel more than ten thousand kilometers, while its lateral maneuver range can also be up to thousands of kilometers. The flight of CAV can be roughly divided into entry and nosedive phases. In the entry phase, CAV manages the flight energy by performing proper lateral maneuvers, and eliminates the heading error by conducting several bank reversals.

Reprinted from ISA Transactions, Vol 65, Yu Wenbin, Chen Wanchun, Jiang Zhiguo, Liu Xiaoming, Zhou Hao, Omnidirectional autonomous entry guidance based on 3-D analytical glide formulas, Pages 487–503, Copyright (2016), with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phillips T.H. A common aero vehicle (CAV) model, description, and employment guide. Schafer Corporation for AFRL and AFSPC. (2003)

    Google Scholar 

  2. Xiong, S., Wang, W., Liu, X., et al.: Guidance law against maneuvering targets with intercept angle constraint. ISA Trans. 53(4), 1332–1342 (2014)

    Article  Google Scholar 

  3. Yu, W., Chen, W.: Trajectory-shaping guidance with final speed and load factor constraints. ISA Trans. 56, 42–52 (2015a)

    Article  Google Scholar 

  4. Wang, X., Zhang, Y., Wu, H.: Sliding mode control based impact angle control guidance considering the seeker’s field-of-view constraint. ISA Trans. 61, 49–59 (2016)

    Article  Google Scholar 

  5. Harpold, J.C., Graves, C.A.: Shuttle Entry Guidance. NASA Lyndon B. Johnson Space Center, Houston (1979)

    Google Scholar 

  6. Eggers, A.J., Allen, H.J., Neice, S.E. A Comparative Analysis of the Performance of Long-range Hypervelocity Vehicles. National Advisory Committee for Aeronautics. (1957)

    Google Scholar 

  7. Gazley, C. Atmospheric entry. The RAND Corporation (1960)

    Google Scholar 

  8. Lees, L., Hastwig, F.W., Cohen, C.B.: Use of aerodynamic lift during entry into the earth’s atmosphere. ARS J. 29(9), 633–641 (1959)

    Article  Google Scholar 

  9. Ting, L., Wang, K.: An approximate analytic solution of re-entry trajectory with aerodynamic forces. ARS J. 30(6), 565–566 (1960)

    Google Scholar 

  10. Loh, W.H.T.: Dynamics and Thermodynamics of Planetary Entry. Prentice Hall, Englewood Cliffs (1963a)

    Google Scholar 

  11. Loh, W.H.T.: Some exact analytical solutions of planetary entry. AIAA J. 1(4), 836–842 (1963b)

    Article  Google Scholar 

  12. Cohen, M. Some Closed Form Solutions to the Problem of Re-entry of Lifting and Non-lifting Vehicles//2nd Aerospace Sciences Meeting. New York, p. 46. (1965)

    Google Scholar 

  13. Nyland, F.S. Hypersonic turning with constant bank angle control. The RAND Corporation. (1965)

    Google Scholar 

  14. Bell, R.N. A closed-form solution to lifting reentry. Defense Technical Information Center. (1965)

    Google Scholar 

  15. Chen, S.Y. The longitudinal and lateral range of hypersonic glide vehicles with constant bank angle. The RAND Corporation. (1966)

    Google Scholar 

  16. Yu, W., Chen, W.: Entry guidance with real-time planning of reference based on analytical solutions. Adv. Space Res. 55(9), 2325–2345 (2015b)

    Article  Google Scholar 

  17. Hanson, J.M., Coughlin, D.J., Dukeman, G. et al. Ascent, Transition, Entry, and Abort Guidance Algorithm Design for the X-33 Vehicle//Guidance, Navigation, and Control Conference and Exhibit. Boston. 4409 (1998)

    Google Scholar 

  18. Mease, K.D., Chen, D.T., Teufel, P., et al.: Reduced-order entry trajectory planning for acceleration guidance. J. Guidance, Control, Dyn. 25(2), 257–266 (2002)

    Article  Google Scholar 

  19. Dukeman, G.A. Profile-following Entry Guidance Using Linear Quadratic Regulator Theory//AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey. 4457 (2002)

    Google Scholar 

  20. Shen, Z., Lu, P.: On-board generation of three-dimensional constrained entry trajectories. J. Guidance, Control, Dyn. 26(1), 111–121 (2003)

    Article  Google Scholar 

  21. Zhang, Y.L., Chen, K.J., Liu, L., et al.: Entry trajectory planning based on three-dimensional acceleration profile guidance. Aerosp. Sci. Technol. 48, 131–139 (2016)

    Article  Google Scholar 

  22. Powell, R.W.: Six-degree-of-freedom guidance and control-entry analysis of the HL-20. J. Spacecraft Rockets 30(5), 537–542 (1993)

    Article  Google Scholar 

  23. Graesslin, M.H., Telaar, J., Schottle, U.M.: Ascent and reentry guidance concept based on NLP-methods. Acta Astronaut. 55(3–9), 461–471 (2004)

    Article  Google Scholar 

  24. Zimmerman, C., Dukeman, G., Hanson, J.: Automated method to compute orbital reentry trajectories with heating constraints. J. Guidance, Control, Dyn. 26(4), 523–529 (2003)

    Article  Google Scholar 

  25. Xie, Y., Liu, L., Tang, G., et al.: Highly constrained entry trajectory generation. Acta Astronaut. 88, 44–60 (2013)

    Article  Google Scholar 

  26. Zhao, J., Zhou, R.: Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints. Chin. J. Aeronaut. 26(6), 1544–1553 (2013)

    Article  Google Scholar 

  27. Xu, B., Wang, D., Sun, F., et al.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)

    Article  MathSciNet  Google Scholar 

  28. Bu, X., Wu, X., Zhu, F., et al.: Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors. ISA Trans. 59, 149–159 (2015)

    Article  Google Scholar 

  29. Shao, X., Wang, H.: Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties. ISA Trans. 54, 27–38 (2015)

    Article  Google Scholar 

  30. Tian, B., Fan, W., Zong, Q.: Integrated guidance and control for reusable launch vehicle in reentry phase. Nonlinear Dyn. 80(1–2), 397–412 (2015)

    Article  Google Scholar 

  31. Zhao, J., Zhou, R.: Pigeon-inspired optimization applied to constrained gliding trajectories. Nonlinear Dyn. 82(4), 1781–1795 (2015)

    Article  MathSciNet  Google Scholar 

  32. Lu, P.: Entry guidance: a unified method. J. Guidance, Control, Dyn. 37(3), 713–728 (2014)

    Article  Google Scholar 

  33. Yu, W., Chen, W. Guidance Scheme for Glide Range Maximization of a Hypersonic Vehicle//AIAA Guidance, Navigation, and Control Conference. Portland. 6714 (2011)

    Google Scholar 

  34. Kermode, A.C.: Mechanics of Flight, 11th edn. Prentice Hall, London (2006)

    MATH  Google Scholar 

  35. Hu, J., Li, J., Chen, W. Longitudinal Characteristics of Steady Glide Trajectory for Hypersonic Vehicle//IEEE International Conference on Control, Automation and Information Sciences. Changshu. 272–279 (2015)

    Google Scholar 

  36. Chowdhary, G., Jategaonkar, R.: Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter. Aerosp. Sci. Technol. 14(2), 106–117 (2010)

    Article  Google Scholar 

  37. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Cengage Learning, Boston (2010)

    MATH  Google Scholar 

  38. Zarchan, P. Tactical and Strategic Missile Guidance, 5th ed. AIAA Progress in Aeronautics and Astronautics (2007)

    Google Scholar 

  39. Kidiyarova, V.G., Tarasenko, D.A., Schereia, I.A. Influence of Longitudinal Variations of the Structure of the Temperature, Pressure and Wind Fields in the Stratosphere and Mesosphere of the Northern Hemisphere//16 th COSPAR Plenary Meeting. Konstanz. (1973)

    Google Scholar 

  40. Zeilik, M.A., Gregory, S.A. Introductory Astronomy and Astrophysics, 4th ed. Saunders College Publishing (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanchun Chen .

Appendices

Appendix 1: Generalized States of Motion

Before introducing the way of converting the conventional states of motion \(\{ \lambda ,\phi ,H,V,\gamma ,\psi \}\) into the generalized states \(\{ \tilde{\lambda },\tilde{\phi },\tilde{H},\tilde{V},\tilde{\gamma },\tilde{\psi }\}\), we need introduce two frames of reference: one is called the Geocentric Equatorial Rotating (GER) frame and the other is called the local North-East-Down (NED) frame [16].

The GER frame is a frame with origin at the Earth’s center E. The xe and ye axes are in the equatorial plane while the xe axis intersects with the prime meridian. The ze axis points towards the north polar. The GER frame rotates together with Earth.

The origin of the NED frame, denoted as o, is at the intersection of the Earth’s surface and the segment connecting the Earth’s center with the mass center of the vehicle, denoted as M. The x axis points to the local north, the y axis points to the local east, and the z axis points to the Earth’s center.

The coordinate transformation matrix from the GER frame to the NED frame can be calculated by

$$ {\mathbf{T}}_{{{\text{GER}}}}^{{\text{NEDP}}} = \left[ {\begin{array}{*{20}l} { - \cos (\lambda )\sin (\phi )} \hfill & { - \sin (\lambda )\sin (\phi )} \hfill & {\cos (\phi )} \hfill \\ { - \sin (\lambda )} \hfill & {\cos (\lambda )} \hfill & 0 \hfill \\ { - \cos (\lambda )\cos (\phi )} \hfill & { - \sin (\lambda )\cos (\phi )} \hfill & { - \sin (\phi )} \hfill \\ \end{array} } \right] $$
(13.87)

As shown in Sect. 13.3.3.2, the entry guidance updates the AGI frame once in each guidance cycle and uses the current conventional states to determine the initial generalized states appearing in the analytical glide formulas. Therefore, we have.

$$ \tilde{\lambda }_{0} = 0,\tilde{\phi }_{0} = 0,\tilde{H}_{0} = H $$
(13.88)

\({\tilde{\mathbf{V}}}\) and V are the velocity vectors of the vehicle relative to the AGI frame and the rotating Earth, respectively. Since the AGI frame is an inertial frame, \({\tilde{\mathbf{V}}}\) is equal to the sum of V and the velocity vector due to the Earth’s rotation, as follows.

$$ {\tilde{\mathbf{V}}}_{0}^{{{\text{NED}}}} = \left[ {\begin{array}{*{20}c} {V\cos (\gamma )\cos (\psi )} & {V\cos (\gamma )\sin (\psi ) + \omega_{e} (R_{e} + H)\cos (\phi )} & { - V\sin (\gamma )} \\ \end{array} } \right]^{T} $$
(13.89)

where the superscript “NED” means the coordinates are with respect to the NED frame, and the superscript “T” represents the transform of vector or matrix. According to the definitions of the generalized states of motion shown in Sect. 13.3.3.2, from Eq. (13.86), we have

$$ \tilde{V}_{0} = \sqrt {V^{2} + 2V\omega_{e} (R_{e} + H)\cos (\phi )\cos (\gamma )\sin (\psi ) + \omega_{e}^{2} (R_{e} + H)^{2} \cos^{2} (\phi )} $$
(13.90)
$$ \tilde{\gamma }_{0} = \arcsin \left( {\frac{V\sin (\gamma )}{{\tilde{V}_{0} }}} \right) $$
(13.91)
$$ \tilde{\psi }_{0} = \left\{ {\begin{array}{*{20}l} {\arccos \left( {\frac{{{\tilde{\mathbf{z}}}^{{{\text{GER}}}} \cdot {\tilde{\mathbf{V}}}_{H0}^{{{\text{GER}}}} }}{{||{\tilde{\mathbf{V}}}_{H0}^{{{\text{GER}}}} ||}}} \right);} \hfill & {({\tilde{\mathbf{V}}}_{H0}^{{{\text{GER}}}} \times {\tilde{\mathbf{z}}}^{{{\text{GER}}}} ) \cdot {\tilde{\mathbf{x}}}^{{{\text{GER}}}} \ge 0} \hfill \\ { - \arccos \left( {\frac{{{\tilde{\mathbf{z}}}^{{{\text{GER}}}} \cdot {\mathbf{V}}_{H}^{{{\text{GER}}}} }}{{||{\tilde{\mathbf{V}}}_{H0}^{{{\text{GER}}}} ||}}} \right);} \hfill & {({\tilde{\mathbf{V}}}_{H0}^{{{\text{GER}}}} \times {\tilde{\mathbf{z}}}^{{{\text{GER}}}} ) \cdot {\tilde{\mathbf{x}}}^{{{\text{GER}}}} < 0} \hfill \\ \end{array} } \right. $$
(13.92)

where \({\tilde{\mathbf{V}}}_{H0}^{{{\text{GER}}}}\) is the horizontal component of \({\tilde{\mathbf{V}}}_{0}^{{{\text{GER}}}}\) and calculated by the following equations, and \({\tilde{\mathbf{x}}}^{{{\text{GER}}}}\) and \({\tilde{\mathbf{z}}}^{{{\text{GER}}}}\) are the unit vectors along the positive directions of the \(\tilde{x}\)- and \(\tilde{z}\)-axes of the AGI frame, respectively. The superscript “GER” represents the coordinates are with respect to the GER frame.

$$ {\tilde{\mathbf{V}}}_{H0}^{{{\text{GER}}}} = \left( {{\mathbf{T}}_{{{\text{GER}}}}^{{{\text{NED}}}} } \right)^{T} {\tilde{\mathbf{V}}}_{H0}^{{{\text{NED}}}} $$
(13.93)
$$ {\tilde{\mathbf{V}}}_{H0}^{{{\text{NED}}}} = \left[ {\begin{array}{*{20}c} {V\cos (\gamma )\cos (\psi )} \\ {V\cos (\gamma )\sin (\psi ) + \omega_{e} (R_{e} + H)\cos (\phi )} \\ 0 \\ \end{array} } \right] $$
(13.94)

Now we determine the desired final generalized states of motion. As the dot product of two unit vectors is just equal to the cosine of the angle between the two vectors, the generalized longitude, latitude, and altitude of the predicted collision point P, as shown in Fig. 13.4, can be calculated by.

$$ \tilde{\lambda }_{P} = \arccos ({\hat{\mathbf{x}}}_{EP}^{{{\text{GER}}}} \cdot {\tilde{\mathbf{x}}}^{{{\text{GER}}}} ),\tilde{\phi }_{P} = 0,\tilde{H}_{P} = H_{T} $$
(13.95)

where \({\hat{\mathbf{x}}}_{EP}^{{{\text{GER}}}}\) is the unit vector pointing from E to P, and \({\tilde{\mathbf{x}}}^{{{\text{GER}}}}\) is the unit vector along the \(\tilde{x}\)-axis of the AGI frame.

The desired final generalized speed is denoted as \(\tilde{V}_{{\text{TAEM}}}\). Apparently, due to the effect of the Earth’s rotation, there are \(\tilde{V}_{{\text{TAEM}}} \ne V_{{\text{TAEM}}}\). As shown in Fig. 13.4, since the vehicle flies to the point P approximately along the generalized equator, we assume that the desired final generalized velocity vector \({\tilde{\mathbf{V}}}_{{\text{TAEM}}}\) is parallel to the generalized equator, where the unit vector along the generalized equator at the point P, denoted as \({\mathbf{x}}_{GEP}\), can be calculated using the following equations.

$$ {\mathbf{x}}_{1}^{{{\text{GER}}}} = {\hat{\mathbf{x}}}_{EP}^{{{\text{GER}}}} - {\tilde{\mathbf{x}}}^{{{\text{GER}}}} $$
(13.96)
$$ {\mathbf{x}}_{2}^{{{\text{GER}}}} = {\mathbf{x}}_{1}^{{{\text{GER}}}} - ({\mathbf{x}}_{1}^{{{\text{GER}}}} \cdot {\hat{\mathbf{x}}}_{EP}^{{{\text{GER}}}} ){\hat{\mathbf{x}}}_{EP}^{{{\text{GER}}}} $$
(13.97)
$$ {\mathbf{x}}_{GEP}^{{{\text{GER}}}} = \frac{{{\mathbf{x}}_{2}^{{{\text{GER}}}} }}{{||{\mathbf{x}}_{2}^{{{\text{GER}}}} ||}} $$
(13.98)
$$ {\mathbf{x}}_{GEP}^{{{\text{NEDP}}}} = {\mathbf{T}}_{{{\text{GER}}}}^{{{\text{NEDP}}}} {\mathbf{x}}_{GEP}^{{{\text{GER}}}} $$
(13.99)

where the superscript “NEDP” represents the NED frame at the point P, and \({\mathbf{T}}_{{{\text{GER}}}}^{{{\text{NEDP}}}}\) is the transform matrix from the GER frame to the NEDP frame (Fig. 13.29).

Fig. 13.29
figure 29

\({\tilde{\mathbf{V}}}_{{\text{TAEM}}}\) is assumed to be tangent to the generalized equator

\({\mathbf{V}}_{e}^{P}\) is the velocity vector due to the Earth’s rotation at the point P. \({\mathbf{V}}_{e}^{P}\) points towards the local East and has a magnitude of

$$ V_{e}^{P} = \omega_{e} (R_{e} + H_{{\text{TAEM}}} )\cos (\phi_{P} ) $$
(13.100)

Using the assumption that \({\tilde{\mathbf{V}}}_{{\text{TAEM}}}\) is parallel to \({\mathbf{x}}_{GEP}\), we have

$$ {\tilde{\mathbf{V}}}_{{\text{TAEM}}} = \tilde{V}_{{\text{TAEM}}} {\mathbf{x}}_{GEP} $$
(13.101)
$$ \cos (\theta_{P} ) = {\mathbf{x}}_{GEP}^{{{\text{NEDP}}}} |_{y} $$
(13.102)

Then we have

$$ ({\tilde{\mathbf{V}}}_{{\text{TAEM}}} - {\mathbf{V}}_{e}^{p} )^{2} = ({\mathbf{V}}_{{\text{TAEM}}} )^{2} $$
(13.103)

Expanding the above equation yields

$$ \tilde{V}_{{\text{TAEM}}}^{2} - 2\tilde{V}_{{\text{TAEM}}} V_{e}^{P} \cos (\theta_{P} ) + (V_{e}^{P} )^{2} = V_{{\text{TAEM}}}^{2} $$
(13.104)

Solving the above equation for \(\tilde{V}_{{\text{TAEM}}}\) yields

$$ \tilde{V}_{{\text{TAEM}}} = V_{e}^{P} \cos (\theta_{P} ) + \sqrt {(V_{e}^{P} )^{2} (\cos^{2} (\theta_{P} ) - 1) + V_{{\text{TAEM}}}^{2} } $$
(13.105)

Further, the desired final absolute specific energy can be calculated by

$$ \tilde{E}_{{\text{TAEM}}} = \frac{{\tilde{V}_{{\text{TAEM}}}^{2} }}{2} - \frac{\mu }{{R_{e} + H_{{\text{TAEM}}} }} $$
(13.106)

Appendix 2: Generalized Aerodynamic Forces

Fig. 13.30
figure 30

Relationship between the conventional and generalized aerodynamic forces

In this appendix, we show the relationship between the conventional aerodynamic forces \(\{ L_{1} ,\;L_{2} ,\;D\}\) and the generalized aerodynamic forces \(\{ \tilde{L}_{1} ,\;\tilde{L}_{2} ,\;\tilde{D}\}\). To reduce the complexity of derivation, we assume that \(\gamma = 0\). In Fig. 13.30, \({\mathbf{V}}_{e}\) is the velocity vector due to the Earth’s rotation and \(\theta_{V}\) is the angle between \({\tilde{\mathbf{V}}}\) and V, which can be calculated by

$$ \sin (\theta_{V} ) = \frac{{({\mathbf{V}} \times {\tilde{\mathbf{V}}}) \cdot {\tilde{\mathbf{z}}}}}{{||{\mathbf{V}}|| \cdot ||{\tilde{\mathbf{V}}}||}} = \frac{{\omega_{e} (R_{e} + H)\cos (\psi )\cos (\phi )}}{{\tilde{V}_{0} }} $$
(13.107)

From Fig. 13.30, we have

$$ L_{1} = \tilde{L}_{1} $$
(13.108)
$$ L_{2} = \tilde{L}_{2} \cos (\theta_{V} ) - \tilde{D}\sin (\theta_{V} ) $$
(13.109)
$$ D = \tilde{D}\cos (\theta_{V} ) + \tilde{L}_{2} \sin (\theta_{V} ) $$
(13.110)

Then we can convert \(\widetilde{{{\text{L}}_{{1}} {\text{/D}}}}\) and \(\widetilde{{{\text{L}}_{2} {\text{/D}}}}\) into \({\text{L}}_{{1}} {\text{/D}}\) and \({\text{L}}_{2} {\text{/D}}\), as follows

$$ {\text{L}}_{{1}} {\text{/D}} = \frac{{\widetilde{{{\text{L}}_{{1}} {\text{/D}}}}}}{{\cos (\theta_{V} ) + \widetilde{{{\text{L}}_{2} {\text{/D}}}}\sin (\theta_{V} )}} $$
(13.111)
$$ {\text{L}}_{2} {\text{/D = }}\frac{{\widetilde{{{\text{L}}_{2} {\text{/D}}}}\cos (\theta_{V} ) - \sin (\theta_{V} )}}{{\cos (\theta_{V} ) + \widetilde{{{\text{L}}_{2} {\text{/D}}}}\sin (\theta_{V} )}} $$
(13.112)

Conversely, we can also convert \({\text{L}}_{{1}} {\text{/D}}\) and \({\text{L}}_{2} {\text{/D}}\) into \(\widetilde{{{\text{L}}_{{1}} {\text{/D}}}}\) and \(\widetilde{{{\text{L}}_{2} {\text{/D}}}}\), as follows

$$ \widetilde{{{\text{L}}_{{1}} {\text{/D}}}} = \frac{{{\text{L}}_{{1}} {\text{/D}}}}{{\cos (\theta_{V} ) - \sin (\theta_{V} ){\text{L}}_{2} {\text{/D}}}} $$
(13.113)
$$ \widetilde{{{\text{L}}_{2} {\text{/D}}}} = \frac{{\cos (\theta_{V} ){\text{L}}_{2} {\text{/D + }}\sin (\theta_{V} )}}{{\cos (\theta_{V} ) - \sin (\theta_{V} ){\text{L}}_{2} {\text{/D}}}} $$
(13.114)

Now we investigate the relationship between \({\text{L/D}}\) and \(\widetilde{{\text{L/D}}}\). From Eqs. (13.10713.108), we have

$$ {\text{L/D}} = \frac{{\sqrt {\left( {\widetilde{{{\text{L}}_{{1}} {\text{/D}}}}} \right)^{2} + \left( {\widetilde{{{\text{L}}_{2} {\text{/D}}}}\cos (\theta_{V} ) - \sin (\theta_{V} )} \right)^{2} } }}{{\cos (\theta_{V} ) + \widetilde{{{\text{L}}_{2} {\text{/D}}}}\sin (\theta_{V} )}} $$
(13.115)

From Eqs. (13.10913.110), we have

$$ \widetilde{{\text{L/D}}} = \frac{{\sqrt {\left( {{\text{L}}_{{1}} {\text{/D}}} \right)^{2} + \left( {{\text{L}}_{2} {\text{/D}}\cos (\theta_{V} ) + \sin (\theta_{V} )} \right)^{2} } }}{{\cos (\theta_{V} ) - {\text{L}}_{2} {\text{/D}}\sin (\theta_{V} )}} $$
(13.116)

Because \(\theta_{V}\) is near zero, we approximate the numerator of Eq. (13.112) by the first-order Taylor series at \(\theta_{V} = 0\), as follows

$$ \widetilde{{\text{L/D}}} \approx \frac{{{\text{L/D}} + \sin (\sigma )\theta_{V} }}{{\cos (\theta_{V} ) - {\text{L/D}}\sin (\sigma )\sin (\theta_{V} )}} $$
(13.117)

Thus, we get the approximation relation between \({\text{L/D}}\) and \(\widetilde{{\text{L/D}}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W., Zhou, H., Yu, W., Yang, L. (2021). Omnidirectional Autonomous Reentry Guidance Based on 3-D Analytical Glide Formulae Considering Influence of Earth’s Rotation. In: Steady Glide Dynamics and Guidance of Hypersonic Vehicle. Springer, Singapore. https://doi.org/10.1007/978-981-15-8901-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8901-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8900-3

  • Online ISBN: 978-981-15-8901-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics