Skip to main content

Introduction

  • Chapter
  • First Online:
Polarimetric Microwave Imaging
  • 382 Accesses

Abstract

Synthetic Aperture Radar (SAR) is a high-resolution active microwave remote sensing system for all-weather, day and night, and wide-coverage imaging capability. Since its firstĀ appearance in the 1950s, SAR has gradually developed into an important remote sensing tool. In recent years, SAR technology has made great progress, and Polarization SAR (PolSAR) has become an important trend in the development of microwave imaging remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.-S. Lee, M.R. Grunes, E. Pottier, Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR. IEEE. Trans. GRS 39(11), 2343ā€“2351 (2001)

    Google ScholarĀ 

  2. Cosmo-Skymed System HandBook, 30 April, 2007

    Google ScholarĀ 

  3. G. Sinclair, The transmission and reception of elliptically polarized waves. Proc. IRE 38, 148ā€“151 (1950)

    ArticleĀ  Google ScholarĀ 

  4. J.R. Huynen, Phenomenological theory of radar targets, Ph. D. Dissertation, 1970

    Google ScholarĀ 

  5. A.B. Kostinski, W.M. Boerner, On foundation of radar polarimetry. IEEE Trans. Antennas Propag. 34(12), 1395ā€“1403

    Google ScholarĀ 

  6. F.T. Ulaby, C. Elachi, in Radar Polarimetry for Geoscience Applications (Artech House Inc, Boston, London, 1990), pp. 281ā€“295

    Google ScholarĀ 

  7. G.R. Valenzuela, SAR imaging of ocean waves in the presence of variable currents, in Proceedings of the Workshop on Modulation of Short Wind Waves in the Gravity-Capillary Range by Non-Uniform Currents, The Netherlands, 24ā€“26 May 1988 (pp. 141ā€“153)

    Google ScholarĀ 

  8. R.L. Jordan, B.L. Huneycutt, M. Werner, The SIR-C\X-SAR synthetic aperture radar system. Proc. IEEE 79(6) (1991)

    Google ScholarĀ 

  9. Y.-L. Desnos, C. Buck, J. Guijarro, G. levrini, J.-L. Suchail, R. Torres, H. Laur, J. Closa, B. Rosich, The ENVISAT advance synthetic aperture radar system (IEEE, 2000)

    Google ScholarĀ 

  10. R.K. Hawkins, R. Touzi, J. Wolfe, P.J. Meadows, ASAR AP mode performance and applications potential (IEEE, 2003)

    Google ScholarĀ 

  11. A. Rosenqvist, M. Shimada, M. Watanabe, ALOS PALSAR: technical outline and mission concepts, in 4th International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications Innsbruck, Austria, 16ā€“19 Nov 2004

    Google ScholarĀ 

  12. P.A. Fox, A.P. Luscombe, A.A. Thompson, Radarsat-2 SAR modes development and utilization. Can. J. Remote Sens. 30(3), 258ā€“264 (2004)

    Google ScholarĀ 

  13. J. Mittermayer, H. Runge, Conceptual studies for exploiting the TerraSAR-X dual receive antenna (IEEE, 2003)

    Google ScholarĀ 

  14. M. Stangl, R. Werninghaus, R. Zahn, The TerraSAR-X active phased array antenna,2003 IEEE

    Google ScholarĀ 

  15. Cosmo-Skymed System Description & User Guide, 4 May, 2007

    Google ScholarĀ 

  16. T. Misra, S.S. Rana, V.H. Bora, N.M. Sesai, C.V.N. Rao, Rajeevjyothi, SAR payload of radar imaging satellite (RISAT) of ISRO, in Proceedings of EUSAR 2006

    Google ScholarĀ 

  17. T. Misra, S.S. Rana, N.M. Desai, D.B. Dave, Rajeevjyoti et al., Synthetic aperture radar payload on-board RISAT-1: configuration, technology and performance. Curr. Sci. 104(4) (2013)

    Google ScholarĀ 

  18. F. RidhaTouzi, Charbonneay, characterization of target symmetric scattering using polarimetric SAR. IEEE Trans. GRS 40(11), 2507ā€“2516 (2002)

    Google ScholarĀ 

  19. Y. Dong, B.C. Forster, C. Ticehurst, A new decomposition of radar polarization signatures. IEEE Trans. GRS 36(3), 933ā€“939 (1998)

    Google ScholarĀ 

  20. Y.-Q. Jin, S.R. Cloude, Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers. IEEE Trans. GRS 32(6), 1179ā€“1185 (1994)

    Google ScholarĀ 

  21. T.L. Ainsworth, S.R. Cloude, J.S. Lee, Eigenvector analysis of polarimetric SAR data, in Geoscience and Remote Sensing Symposium, IGARSSā€™02, vol. 1 (pp 626ā€“628)

    Google ScholarĀ 

  22. S.R. Cloude, E. Pottier, A review of target decomposition theorems in radar polarimetry. IEEE Trans. GRS 34(2), 498ā€“518 (1996)

    Google ScholarĀ 

  23. A. Freeman, S.L. Darden, A three-component scattering model for polarimetric SAR data. IEEE Trans. GRS 36(3), 963ā€“973 (1998)

    Google ScholarĀ 

  24. U. Bem, E. Pottier, Object based analysis of polarimetric SAR data in alpha entropy-anisotropy decomposition using fuzzy classification by cognition. IEEE Trans. GRS 30(4), 697ā€“704 (1992)

    Google ScholarĀ 

  25. M. Qong, T. Tadono, H. Wakabayashi, M. Shimada, Mueller matrix based classification of polarimetric SAR data, Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 1, 375ā€“377 (2000)

    Google ScholarĀ 

  26. J.R. Huynen, A new extended target decomposition scheme, in Geoscience and Remote Sensing Symposium, IGARSSā€™94, vol. 2 (1994), pp. 1124ā€“1125

    Google ScholarĀ 

  27. I. Hajnsek, K.P. Papathanassiou, S.R. Cloude, Removal of additive noise in polarimetric eigenvalue processing, in Geoscience and Remote Sensing Symposium, IGARSSā€™01, vol. 6 (2001), pp. 2778ā€“2780

    Google ScholarĀ 

  28. M. Qong, A new scattering mechanism enhancement scheme of polarimetric SAR images. IEEE Trans. GRS 40(12), 2582ā€“2596 (2002)

    Google ScholarĀ 

  29. S.R. Cloude, E. Pottier, An entropy based classification scheme for land application of polarimetric SAR. IEEE Trans. GRS 35(1), 68ā€“78 (1997)

    Google ScholarĀ 

  30. G. Liu, S. Huang, Bayesian classification of multi-look polarimetric SAR images with a generalized multiplicative speckle model and adaptive a priori probabilities. Int. J. Remote Sens. 19(1), 161ā€“170 (1998)

    ArticleĀ  Google ScholarĀ 

  31. J.-S. Lee, M.R. Grunes, G. Grandi, Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. GRS 37(5), 2363ā€“2373 (1999)

    Google ScholarĀ 

  32. L.E. Pierce, F.T. Ulaby, K. Sarabandi, M.C. Dobson, Knowledge based classification of polarimetric SAR images. IEEE Trans. GRS 32(5), 1081ā€“1086 (1994)

    Google ScholarĀ 

  33. J.S. Lee, M.K. Grunes, Classification of multi-look polarimetric SAR imagery based on complex wishart distribution. Int. J. Remote Sens. 15(11), 2299ā€“2311 (1994)

    ArticleĀ  Google ScholarĀ 

  34. P. Lombardo, T. Macri Pellizzeri, A. Tomasuolo, Classification of polarimetric SAR images of suburban areas using joint annealed segmentation and H/A/Ī± decomposition, in IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (2001), pp 117ā€“121

    Google ScholarĀ 

  35. F. Mattia, T. Toan, J.-C. Souyris, The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans. GRS 35(4), 954ā€“965 (1997)

    Google ScholarĀ 

  36. Y. Dong, A.K. Milne, B.C. Forster, Segmentation and classification of vegetated areas using polarimetric SAR image data. IEEE. Trans. GRS 39(2), 321ā€“329 (2001)

    Google ScholarĀ 

  37. D.B. Trizna, C. Bachmann, M. Sletten, Projection pursuit classification of multiband polarimetric SAR land images. IEEE. Trans. GRS 39(11), 2380ā€“2385 (2001)

    Google ScholarĀ 

  38. I. Hajnsek, S.R. Cloude, J.-S. Lee, E. Pottier, Inversion of surface parameters from polarimetric sar data, in Proceedings of Geoscience and Remote Sensing Symposium, IGARSS 2000, vol. 3 (2000), pp. 1095ā€“1097

    Google ScholarĀ 

  39. M. Moghaddam, S. Saatchi, An inversion algorithm applied to SAR data to retrieve surface parameters, in Geoscience and Remote Sensing Symposium, IGARSSā€™93, vol. 2 (1993), pp. 587ā€“589

    Google ScholarĀ 

  40. E.D. Hernandez-Baquero, J.R. Schott, Atmospheric and surface parameter retrievals from multispectral thermal imagery via reduced-rank multivariate regression, in Proceedings of Geoscience and Remote Sensing Symposium, IGARSS 2000, vol. 4 (2000), pp. 1525ā€“1527

    Google ScholarĀ 

  41. Y. Oh, K. Sarabandi, F.T. Ulaby, An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation, in Geoscience and Remote Sensing Symposium, IGARSSā€™94, vol. 3 (1994), pp. 1582ā€“1584

    Google ScholarĀ 

  42. I. Hajnsek, E. Pottier, S.R. Cloude, Inversion of surface parameters from polarimetric SAR. IEEE Trans. GRS 41(4) 727ā€“744 (2003)

    Google ScholarĀ 

  43. D.L. Schuler, J.S. Lee, D. Kasilingam, G. Nesti, Remote sensing of surface roughness using polarimetric SAR data, in Geoscience and Remote Sensing Symposium, IGARSS ā€˜01, vol. 2 (2001), pp. 916ā€“918

    Google ScholarĀ 

  44. I. Hajnsek, K.P. Papathanassiou, S.R. Cloude, L- and P-band for surface parameter estimation, in Geoscience and Remote Sensing Symposium, IGARSS ā€˜01, vol. 6 (2001), pp. 2775ā€“2777

    Google ScholarĀ 

  45. I. Hajnsek, K.P. Papathanassiou, A. Moreira, S.R. Cloude, Surface parameter estimation using interferometric and polarimetric SAR, in Geoscience and Remote Sensing Symposium, IGARSS ā€˜02, vol. 1 (2002), pp. 420ā€“422

    Google ScholarĀ 

  46. E. Jakeman, R.J.A. Tough, Generalized K distribution: a statistical model for weak scattering. J. Opt. Soc. Am. A 4(9), 1764ā€“1772 (1987)

    ArticleĀ  Google ScholarĀ 

  47. J.K. Jaa, Amplitude distribution of composite terrain radar clutter and the K-distribution. IEEE Trans. Antennas Propag. 32(10), 1044ā€“1061 (1984)

    Google ScholarĀ 

  48. A. Baraldi, F. Panniggiani, A refined gamma MAP SAR speckle filter with improved geometrical adaptivity. IEEE Trans. GRS 33, 1245ā€“1257 (1995)

    Google ScholarĀ 

  49. L.M. Novak, M.C. Burl, Optimal speckle suppression in polarimetric SAR imagery. IEEE Trans. On AES 26(2), 293ā€“305 (1990)

    Google ScholarĀ 

  50. J.-S. Lee, M.R. Grunes, S.A. Mango, Speckle suppression in multipolarization multifrequency SAR imagery. IEEE Trans. GRS 39(4), 535ā€“544 (1991)

    ArticleĀ  Google ScholarĀ 

  51. L M. Novak, M.C. Burl, W.W. Irving, Optimal speckle suppression in polarimetric SAR target detection. IEEE Trans. AES 29(1), 234ā€“243 (1993)

    Google ScholarĀ 

  52. G. Liu, S. Huang, A. Torre, F. Rubertone, The multilook polarimetric whitening filter (MPWF) for intensity speckle suppression in polarimetric SAR images. IEEE Trans. GRS 36(3), 1020ā€“1061 (1998)

    Google ScholarĀ 

  53. Y. Domg, A.K. Milne, B.C. Forster, Toward edge sharpening: ASAR speckle filtering algorithm. IEEE Trans. GRS 39(4), 851ā€“863 (2001)

    Google ScholarĀ 

  54. C. Ju, C.R. Moloney, An edge-enhanced segmentation method for SAR images, in Proceedings of Electrical and Computer Engineering, 25ā€“28 May 1997, vol. 2, pp. 599ā€“602

    Google ScholarĀ 

  55. J. Schou, H. Skriver, Restoration of polarimetric SAR images using simulated annealing. IEEE Trans. GRS 39(9), 2005ā€“2016 (2001)

    Google ScholarĀ 

  56. A Lopes, E. Nezry, R. Touzi, H. Laur, Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sens. 14(9), 1735ā€“1758 (1993)

    Google ScholarĀ 

  57. R. Touzi, A. Lopes, The principle of speckle filtering in polarimetric SAR imagery. IEEE. Trans. GRS 32(5), 1110ā€“1114 (1994)

    Google ScholarĀ 

  58. Y. Zhen, Research on synthetic aperture radar interferometry and polarimetric interferometry, Ph.D. Dissertation, Chinese Academy of Sciences, June 2003

    Google ScholarĀ 

  59. K.P. Papathanassiou, S.R. Cloude, Polarimetric effects in repeat-pass SAR interferometry, in Proceedings of IGARSSā€™ 97, Singapore, Singapore (1997), pp. 1926ā€“1928

    Google ScholarĀ 

  60. M. Neumann, A. Reigber, L. Ferro-Famil, PolInSAR coherence set theory and application, in Proceedings of EUSAR 2006, Dresden, Germany (2006)

    Google ScholarĀ 

  61. M. Moghaddam, Effect of medium symmetries on parameter estimation with polarimetric interferometry. J. Electromagn. Waves Appl. 14(2), 173ā€“184 (2000)

    ArticleĀ  Google ScholarĀ 

  62. X. Tao, Y. Jian, P. Yingning, Approach to reversion of DEM based on polarimetric SAR interferometry. J. Tsinghua Univ. (Sci. Technol.) 47(7), 1170ā€“1173 (2007)

    Google ScholarĀ 

  63. C. Erxue, L. Zengyuan, P. Yong et al., Polarimetric synthetic aperture radar interferometry based mean tree height extraction technique. Sci. Silvae Sin. 43(4), 66ā€“70 (2007)

    Google ScholarĀ 

  64. B. Lu, Research on PolInSAR vertical structure parameter estimation method based on multi-layer model and its application in forest covered area, Graduate School of Chinese Academy of Sciences, Beijing

    Google ScholarĀ 

  65. A.E.E. Rogers, R.P. Ingalls, Venus: mapping the surface reflectivity by radar interferometry. Science 165, 797ā€“799 (1969)

    ArticleĀ  Google ScholarĀ 

  66. L.C. Graham, Synthetic Interferometrer Radar for Topographic Mapping. Proceedings of IEEE 62, 763ā€“768 (1974)

    ArticleĀ  Google ScholarĀ 

  67. H.A. Zebker, R.M. Goldstein, Topographic mapping from interferometric SAR observations. J. Geophys. Res. 91, 4993ā€“4999 (1986)

    ArticleĀ  Google ScholarĀ 

  68. F.K. Li, R.M. Goldstein, Studies of multibaseline space-borne interferometric synthetic aperture radars. IEEE Trans. GRS 28(1), 88ā€“97 (1990)

    Google ScholarĀ 

  69. E. Rodriguez, J.M. Martin, Theory and design of interferometric synthetic aperture radars. IEE Proc F 139(2), 147ā€“159 (1992)

    ArticleĀ  Google ScholarĀ 

  70. H.A. Zebker, J. Villasenor, Decorrelation in interferometric radar echoes. IEEE Trans. GRS 30(5), 950ā€“959 (1992)

    Google ScholarĀ 

  71. H.A. Zebker, C.L. Werner, P.A. Rosen, S. Hensley, Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Trans. GRS 32(4), 823ā€“836 (1994)

    Google ScholarĀ 

  72. C.L. Werner, S. Hensley et al., Techniques and applications of SAR interferometry for ERS-1: topographic mapping, change detection, and slope measurement, in Proceedings First ERS-1 Symposiumā€”Space at the Service of our Environment, 4ā€“6 Nov 1992, pp. 205ā€“210

    Google ScholarĀ 

  73. S.R. Cloude, K.P. Papathanassiou, Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 36(5), 1551ā€“1565 (1998)

    ArticleĀ  Google ScholarĀ 

  74. K. Raney, Dual-polarized SAR and Stokes parameters. IEEE Geosci. Remote Sens. Lett. 3, 319ā€“417 (2006)

    ArticleĀ  Google ScholarĀ 

  75. M.-L. Truong-LoĆÆ et al., The conformity coefficient or how to explore the scattering behavior from compact polarimetry mode, in 2009 IEEE Radar Conference (2009)

    Google ScholarĀ 

  76. T. Lulu, Study on information processing of polarimetric and compact polarimetric SAR interferometry, Ph.D. Dissertation, Chinese Academy of Sciences, 2010

    Google ScholarĀ 

  77. J.C. Souyris, S. Mingot, Polarimetry based on one transmitting and two receiving polarizations: the p/4 mode, in Proceedings IGARSS'02, Toronto, Canada, July 2002

    Google ScholarĀ 

  78. N. Stacy, M. Preiss, Compact polarimetric analysis of X band SAR data, in Proceedings of EUSAR'06, Dresden, Germany, May 2006

    Google ScholarĀ 

  79. K. Raney, Hybrid polarimetric SAR architecture, in Proceedings of IGARSS'06, July 2006

    Google ScholarĀ 

  80. P.C. Dubois-Fernandez et al., The compact polarimetry alternative for space-borne SAR at low frequency. IEEE Trans. Geosci. Remote. Sens. 46(10), 3208ā€“3222 (2008)

    ArticleĀ  Google ScholarĀ 

  81. J.C. Souyris, P. Imbo, R. Fjortoft, S. Mingot, J.S. Lee, Compact polarimetry based on symmetry properties of geophysical media: the p/4 mode. IEEE Trans. Geosci. Remote. Sens. 43(3), 634ā€“646 (2005)

    Google ScholarĀ 

  82. L.M. Novak, M.C. Burl, Optimal polarimetric processing for enhanced target detection. IEEE Trans. Geosci. Remote Sens. 29(1), 234ā€“243 (1993)

    Google ScholarĀ 

  83. S.R. Cloude, K.P. Papathanassiou, Three-stage inversion process for polarimetric SAR interferometry. IEE Proc.-Radar Sonar Navig. 150(3), 125ā€“134 (2003)

    Google ScholarĀ 

  84. M.W. Whitt, F.T. Ulaby, P. Polatin, V.V. Liepa, A general polarimetric radar calibration technique. IEEE Trans. Antennas Propag. 39(1), 62ā€“67 (1991)

    ArticleĀ  Google ScholarĀ 

  85. A. Guissard, Phase calibration of polarimetric radars from slightly rough surfaces. IEEE Trans. Geosci. Remote Sens. 32(3), 712ā€“715 (1994)

    ArticleĀ  Google ScholarĀ 

  86. X. Yuxiao, Multi-polarimetric synthetic aperture radar calibration technology, Master's Thesis, Institute of Electronics, Chinese Academy of Sciences, 2002

    Google ScholarĀ 

  87. D. Bowei, Research on multi-polarimetric synthetic aperture radar system and polarimetric information processing, Ph. D. Dissertation, Chinese Academy of Sciences, June 2000

    Google ScholarĀ 

  88. L. Xiuqing, Research on polarimetric information processing technology of fully polarization synthetic aperture radar, Ph.D. Dissertation, Chinese Academy of Sciences, Jan 2004

    Google ScholarĀ 

  89. J.-S. Lee, E. Pottier, in Polarimetric Radar Imaging: From Basics to Applications 2008 (CRC Press, New York, 2008)

    Google ScholarĀ 

  90. J. Yang, Y. Yamaguchi, H. Yamada, Development of target null theory. IEEE Trans. GRS 39(2), 330ā€“338 (2001)

    Google ScholarĀ 

  91. J. Yang, Y. Yamaguchi, W.M. Boerner, Numerical methods for solving the optimal problem of contrast enhancement. IEEE Trans. GRS 38(2), 965ā€“971 (2000)

    Google ScholarĀ 

  92. E. Krogager, New decomposition of the radar target scattering matrix. Electron. Lett. 26(18), 1525ā€“1527 (1990)

    ArticleĀ  Google ScholarĀ 

  93. W.L. Cameron, L.K. Leung, Feature motivated polarization scattering matrix decomposition, in Proceedings of IEEE International Radar Conference, Arlington, VA (1990)

    Google ScholarĀ 

  94. A. Freeman, Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. Geosci. Remote Sens. 45(8), 10 (2007)

    Google ScholarĀ 

  95. An Wentao, Study on target decomposition and scattering feature extraction of polarimetric SAR, Ph.D. thesis of Tsinghua University, 2010

    Google ScholarĀ 

  96. H. Yamada, H. Onoda, Y. Yamaguchi, On scattering model decomposition with PolInSAR data, in Proceedings of EUSAR 2008, Friedrichshafen, Germany

    Google ScholarĀ 

  97. L.M. Novak, M.B. Sechtin et al., Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. Aerosp. Electron. Syst. 25(2), 150ā€“165 (1989)

    Google ScholarĀ 

  98. X. Shunping, W. Xuesong, D. Dahai et al., in Polarimetric Radar Imaging Processing and Application (Science Press, Beijing, 2013)

    Google ScholarĀ 

  99. B. Chaney, On the performance of polarimetric target detection algorithms. IEEE Trans. Aerosp. Electron. Syst. 29(1), 234ā€“244 (1993)

    ArticleĀ  Google ScholarĀ 

  100. L. Ferro-Famil, E. Pottier, J.S. Lee, Classification and interpretation of polarimetric interferometric SAR data, in Proceedings of IGARSS'02, Toronto, Canada (2002)

    Google ScholarĀ 

  101. J.S. Lee, E. Krogager, D. L. Schuler, T. L, Ainsworth, On the estimation of polarization orientation angles induced form azimuth slopes using polarimetric SAR data, in Geoscience and Remote Sensing Symposium, Proceedings, IGARSS 2000, vol. 3 (2000), pp. 1310ā€“1312

    Google ScholarĀ 

  102. L. Sagues et al., Indoor experiments on polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 38(2) (2000)

    Google ScholarĀ 

  103. L. Sagues et al., Polarimetric radar interferometry for improved mine detection and surface clutter rejection. IEEE Trans. Geosci. Remote Sens. 39(6), 1271ā€“1278 (2001)

    ArticleĀ  Google ScholarĀ 

  104. A. Reigber et al., Multi-baseline coherence optimization in partial and compact polarimetric modes, in Proceedings of IGARSS 2008, Boston, USA (2008)

    Google ScholarĀ 

  105. L. Tan, P. Huang, Improved investigation on unsupervised classification of compact PolInSAR data, in Proceedings of EUSAR 2012 (2012)

    Google ScholarĀ 

  106. J.J. Van Zyl, The effect of topography on radar scattering from vegetated areas. IEEE Trans. GRS 31(1), 153ā€“160 (1993)

    Google ScholarĀ 

  107. J.-S. Lee, D.L. Schuler, T.L. Ainsworth, On the estimation of radar polarization orientation shifts induced by terrain slopes. IEEE Trans. GRS 40(1), 30ā€“40 (2001)

    Google ScholarĀ 

  108. D.L. Schuler, J.-S. Lee, D. Kasilingam, Surface roughness and slope measurements using polarimetric SAR data. IEEE Trans. GRS 40(3), 687ā€“698 (2002)

    Google ScholarĀ 

  109. D.L. Schuler, J.-S. Lee, Measurement of topography using polarimetric SAR images. IEEE Trans. GRS 34(5), 1266ā€“1276 (1996)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruliang Yang .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 National Defense Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, R., Dai, B., Tan, L., Liu, X., Yang, Z., Li, H. (2021). Introduction. In: Polarimetric Microwave Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-15-8897-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8897-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8896-9

  • Online ISBN: 978-981-15-8897-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics