Skip to main content

Metrology for Atmospheric Environment

Part I: Atmospheric Constituents

  • Chapter
  • First Online:
Metrology for Inclusive Growth of India

Abstract

Metrology for atmospheric environment has assumed great importance for India as country aspires to undertake rapid sustainable economic growth for amelioration of living conditions of its citizens. The enhancement of economic activities impacts the status of environment which needs to be precisely & accurately monitored for formulation and undertaking of required policy measures. CSIR-NPL being the national metrology institute of India has started to develop capabilities for providing apex level traceability for atmospheric measurements. In this chapter, a detailed description is provided about the atmospheric species and properties for which testing and calibration facilities are required to be built in addition to the available test and calibration facilities for some of the atmospheric parameters. CSIR-NPL has undertaken development of various gas standards for providing SI traceability to pollution and greenhouse gas measurements in the country. Efforts have also been undertaken to cater to the national needs of testing and calibration of sensor-based monitoring systems for atmospheric/industrial pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referencess

  1. O.C. Change, Intergovernmental Panel on Climate Change (World Meteorological Organization, 2007)

    Google Scholar 

  2. S. Singh, N.K. Lodhi, A.K. Mishra, S. Jose, S.N. Kumar, R.K. Kotnala, Assessment of satellite-retrieved surface UVA and UVB radiation by comparison with ground-measurements and trends over Mega-city Delhi. Atmos. Environ. 188, 60–70 (2018). https://doi.org/10.1016/j.atmosenv.2018.06.027

    Article  ADS  Google Scholar 

  3. W.L. Chameides, H. Yu, S.C. Liu, M. Bergin, X. Zhou, L. Mearns, G. Wang et al., Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? PNAS 96, 13626–13633 (1999). https://doi.org/10.1073/pnas.96.24.13626

    Article  ADS  Google Scholar 

  4. S. Singh, S. Nath, R. Kohli, R. Singh, Aerosols over Delhi during pre-monsoon months: Characteristics and effects on surface radiation forcing. Geophys. Res. Lett. 32, L13808 (2005). https://doi.org/10.1029/2005GL023062

    Article  ADS  Google Scholar 

  5. World Health Organization, Annual Report, 2005. No. WHO/MPS/07.01. (World Health Organization, 2006)

    Google Scholar 

  6. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2016)

    Google Scholar 

  7. M.O. Andreae, P.J. Crutzen, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276, 1052–1058 (1997). https://doi.org/10.1126/science.276.5315.1052

    Article  Google Scholar 

  8. V. Ramanathan, R.E. Dickinson, The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system. J. Atmos. Sci. 36, 1084–1104 (1979). https://doi.org/10.1175/1520-0469(1979)036%3c1084:TROSOI%3e2.0.CO;2

    Article  ADS  Google Scholar 

  9. M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollute. 151, 362–367 (2008). https://doi.org/10.1016/j.envpol.2007.06.012

    Article  Google Scholar 

  10. A.J. Haagen-Smit, C.E. Bradley, M.M. Fox, Ozone formation in photochemical oxidation of organic substances. J. Ind. Eng. Chem. 45, 2086–2089 (1953). https://doi.org/10.1021/ie50525a044

    Article  Google Scholar 

  11. J.H. Seinfeld, G.R. Carmichael, R. Arimoto, W.C. Conant, F.J. Brechtel, T.S. Bates, T.A. Cahill et al., ACE-ASIA: regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Amer. Meteor. Soc. 85, 367–380 (2004). https://doi.org/10.1175/BAMS-85-3-367

    Article  ADS  Google Scholar 

  12. R.E. Dickinson, R.J. Cicerone, Future global warming from atmospheric trace gases. Nature 319, 109–115 (1986). https://doi.org/10.1038/319109a0

    Article  ADS  Google Scholar 

  13. https://www.businesswire.com/news/home/20180426006864/en/India-Industrial-Gases-Market-2013-2018-2023-Product

  14. P. Matson, K.A. Lohse, S.J. Hall, The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31, 113–119 (2002). https://doi.org/10.1579/0044-7447-31.2.113

    Article  Google Scholar 

  15. J.J. West, A. Cohen, F. Dentener, B. Brunekreef, T. Zhu, B. Armstrong, M.L. Bell et al., What we breathe impacts our health: improving understanding of the link between air pollution and health. Environ. Sci. Technol. 50, 4895–4904 (2016). https://doi.org/10.1021/acs.est.5b03827

    Article  ADS  Google Scholar 

  16. R.J. Stening, Electron density profile changes associated with the equatorial electrojet. J. Atmos. Sol. Terr. Phys. 39, 157–164 (1977). https://doi.org/10.1016/0021-9169(77)90109-X

    Article  ADS  Google Scholar 

  17. S. Sridharan, S. Sathishkumar, S. Gurubaran, Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events. Ann. Geophys. 27, 4125–4130 (2009)

    Article  ADS  Google Scholar 

  18. C. Vineeth, T.K. Pant, R. Sridharan, Equatorial counter electrojets and polar stratospheric sudden warmings-A classical example of high latitude-low latitude coupling. Ann. Geophys. 27, 3147–3153 (2009). https://doi.org/10.5194/angeo-27-3147-2009

    Article  ADS  Google Scholar 

  19. H.L. Liu, A.D. Richmond, Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity. J. Geophys. Res. Space Phys. 118, 2452–2465 (2013). https://doi.org/10.1002/jgra.50265

    Article  ADS  Google Scholar 

  20. T. Matsuno, A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28, 1479–1494 (1971). https://doi.org/10.1175/1520-0469(1971)028%3c1479:ADMOTS%3e2.0.CO;2

    Article  ADS  Google Scholar 

  21. A.K. Upadhayaya, K.K. Mahajan, Ionospheric F2 region: variability and sudden stratospheric warmings. J. Geophys. Res. Space Phys. 118, 6736–6750 (2013). https://doi.org/10.1002/jgra.50570

    Article  ADS  Google Scholar 

  22. S. Gupta, A.K. Upadhayaya, Morphology of ionospheric F2 region variability associated with sudden stratospheric warmings. J. Geophys. Res. Space Phys. 122, 7798–7826 (2017). https://doi.org/10.1002/2017JA024059

    Article  ADS  Google Scholar 

  23. M. Dunajecka, S. Pulinets, Atmospheric and thermal anomalies observed around the time of strong earthquakes in Mexico. Atmosfera. 18, 235–247 (2005)

    Google Scholar 

  24. M.R.M. Daneshvar, M. Khosravi, T. Tavousi, Seismic triggering of atmospheric variables prior to the major earthquakes in the Middle East within a 12-year time-period of 2002–2013. Nat. Hazards. 74, 1539–1553 (2014). https://doi.org/10.1007/s11069-014-1266-5

    Article  Google Scholar 

  25. I. Mahmood, M.F. Iqbal, M.I. Shahzad, S. Qaiser, Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes. J. Atmos. Sol. Terr. Phys. 154, 75–85 (2017). https://doi.org/10.1016/j.jastp.2016.12.018

    Article  ADS  Google Scholar 

  26. H. Le, J.Y. Liu, L. Liu, A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J. Geophys. Res. 116, A02303 (2011). https://doi.org/10.1029/2010JA015781

  27. S. Pulinets, M. Dunajecka, Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M8. 1 Sept. 19, 1985 as a possible indicator of interaction between tectonic plates. Tectonophysics 431, 221–230 (2007). https://doi.org/10.1016/j.tecto.2006.05.044

  28. S. Pulinets, D. Ouzounov, Lithosphere–atmosphere–ionosphere coupling (LAIC) model—an unified concept for earthquake precursors validation. J. Asian Earth Sci. 41, 371–382 (2011). https://doi.org/10.1016/j.jseaes.2010.03.005

    Article  ADS  Google Scholar 

  29. F. Freund, Earthquake forewarning-A multidisciplinary challenge from the ground up to space. Acta Geophys. 61, 775–807 (2013). https://doi.org/10.2478/s11600-013-0130-4

    Article  ADS  Google Scholar 

  30. S.K. Sharma, T.K. Mandal, M. Saxena, Inter-annual variation of ambient ammonia and related trace gases in Delhi India B. Environ. Contam. Tox. 99, 281–285 (2017). https://doi.org/10.1007/s00128-017-2058-x

  31. S.K. Sharma, A. Datta, T. Saud, T.K. Mandal, Y.N. Ahammed, B.C. Arya, M.K. Tiwari, Study on concentration of ambient NH3 and interactions with some other ambient trace gases. Environ. Monit. Assess. 162, 225–235 (2010). https://doi.org/10.1007/s10661-009-0791-2

    Article  Google Scholar 

  32. R. Taipale, T.M. Ruuskanen, J. Rinne, M.K. Kajos, H. Hakola, T. Pohja, M. Kulmala, Quantitative long-term measurements of VOC concentrations by PTR-MS? measurement, calibration, and volume mixing ratio calculation methods. Atmos. Chem. Phys. 8, 6681–6698 (2008). https://doi.org/10.5194/acp-8-6681-2008

    Article  ADS  Google Scholar 

  33. S.K. Sharma, T.K. Mandal, C. Sharma, J.C. Kuniyal, R. Joshi, P.P. Dhyani, A. Sen et al., Measurements of particulate (PM 2.5), BC and trace gases over the northwestern Himalayan region of India. Mapan 29, 243–253 (2014). https://doi.org/10.1007/s12647-014-0104-2

  34. A. Sharma, T.K. Mandal, S.K. Sharma, D.K. Shukla, S. Singh, Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi. J. Atmos. Chem. 74, 451–474 (2017). https://doi.org/10.1007/s10874-016-9351-7

    Article  Google Scholar 

  35. J. Viallon, P. Moussay, R. Wielgosz, B.C. Arya, S.K. Mishra, A. Kumar, D.K. Shukla, J.E. Norris, F.R. Guenther. Final Report on the On-going Key Comparison BIPM.QM-K1: Ozone at Ambient Level, Comparison with NPLI, 2009. Metrologia 47, 08015 (2010). https://doi.org/10.1007/s10874-016-9351-7

  36. https://www.airproducts.in/~/media/Files/PDF/homepage-EPC-World-Magazine-July-pg40-in.pdf

  37. https://www.researchandmarkets.com/reports/4520300/india-industrial-gases-market-by-product-by

  38. https://www.marketwatch.com/press-release/calibration-gas-mixture-market-size-growth-analysis-2020-2026-covering-recent-trend-and-future-growth-feasibility-regional-outlook-and-future-forecast-2020-06-03

  39. https://www.bipm.org/en/publications/si-brochure/mole.html

  40. http://www.bipm.org/

  41. Report on 6th Meeting of CCQM, (2000), https://www.bipm.org/utils/en/pdf/CCQM6-EN.pdf

  42. https://www.bipm.org/utils/common/pdf/CC/CCQM/CCQM1.pdf, CCQM Report on 1st meeting, BIPM, (1995)

  43. https://iopscience.iop.org/article/10.1088/0026-1394/37/1/5 Alink, BIPM Com. Cons. Quan. Mat., progress report on comparison 96–12, 97–12, 99–12.

  44. https://iopscience.iop.org/article/10.1088/0026-1394/37/1/5/pdf, A link, CCQM-key comparison on primary standard gas mixtures, BIPM com. Cons. Quan. Mat. Report 99 (revised)

  45. A. Alink, The first key comparison of primary standard gas mixtures. Metrologia 37, 35–49 (2000). https://doi.org/10.1088/0026-1394/37/1/5

    Article  ADS  Google Scholar 

  46. Final Report, CCQM-K120 a & b; Carbon dioxide in Air at background level (380–480) µmol/mol and at urban level (480–800) µmol/mol https://www.bipm.org/utils/common/pdf/final_reports/QM/K120/CCQM-K120.pdf

  47. APMP.QM-S9.2017 Draft A report Comparison of measurement capability with 100 µmol/mol of Carbon monoxide in nitrogen. https://www.bipm.org/utils/common/pdf/final_reports/QM/S9/APMP.QM-S9.pdf

  48. Draft B Report International Comparison APMP.QM-S7.1 Methane in nitrogen at 2000 μmol/mol

    Google Scholar 

  49. A. Alink et al., Final report for the Key Comparison CCQM-K1.b, (1999). https://kcdb.bipm.org/appendixb/appbresults/ccqm-k1.d/ccqm-k1_final_report.pdf.

  50. A. van der Veen et al., CCQM key comparison CCQM-K3 of measurements of CO, CO2, and C3H8 in N2. Metrologia 39, 121 (2002). https://doi.org/10.1088/0026-1394/39/1/18

    Article  ADS  Google Scholar 

  51. L.A. Konopelko et al., COOMET.QM-K3: automotive emission gas measurements. Metrologia 44, 08005 (2007). https://doi.org/10.1088/0026-1394/44/1A/08005

  52. A.M.H. Van der Veen, J.I.T. Van Wijk, R.P. Van Otterloo, R.M. et al, EUROMET. QM-K3: automotive emission gas measurements. Metrologia39, 08005 (2002). https://doi.org/10.1088/0026-1394/39/1A/23

  53. J.S. Kim, D.M. Moon, K. Kato, M. Maruyama, M.J. Kao, A. Botha, M. Dimashki, APMP. QM-K3: automotive emission gas measurements. Metrologia 40, 08009 (2003). https://doi.org/10.1088/0026-1394/40/1A/08009

  54. APMP.QM-S15, Draft A report, Comparison of measurement capability with 1000 µmol/mol of Carbon dioxide in nitrogen.

    Google Scholar 

  55. S.G. Aggarwal, Recent developments in aerosol measurement techniques and the metrological issues. Mapan 25, 165–189 (2010)

    Article  Google Scholar 

  56. S.G. Aggarwal, S. Kumar, P. Mandal, B. Sarangi, K. Singh, J.Pokhariyal, S.K. Mishra, S. Agarwal, D. Sinha, S. Singh, C. Sharma, P.K. Gupta, Traceability issue in PM 2.5 and PM 10 measurements. Mapan 28, 153–166 (2013). https://doi.org/10.1007/s12647-013-0073-x

  57. Y.H. Cheng, C.J. Tsai, Evaporation loss of ammonium nitrate particles during filter sampling. J. Aerosol Sci. 28, 1553–1567 (1997). https://doi.org/10.1016/S0021-8502(97)00033-5

    Article  ADS  Google Scholar 

  58. S.E. Shin, C.H. Jung, Y.P. Kim, Analysis of the measurement difference for the PM10 concentrations between beta-ray absorption and gravimetric methods at Gosan. Aerosol Air Qual. Res. 11, 846–853 (2011). https://doi.org/10.4209/aaqr.2011.04.0041

    Article  Google Scholar 

  59. M.B. Ranade, M.C. Woods, F.L. Chen, L.J. Purdue, K.A. Rehme, Wind tunnel evaluation of PM10 samplers. Aerosol Sci. Technol. 13, 54–71 (1990). https://doi.org/10.1080/02786829008959424

    Article  ADS  Google Scholar 

  60. C.J. Tsai, A field study of three collocated ambient PM10 samplers. Part. Part. Syst. Charact. 12, 10–15 (1995). https://doi.org/10.1002/ppsc.19950120103

    Article  Google Scholar 

  61. W. John, W. Winklmayr, H.C. Wang, Particle deagglomeration and reentrainment in a PM10 sampler. Aerosol Sci. Tech. 14, 165–176 (1991). https://doi.org/10.1080/02786829108959480

    Article  ADS  Google Scholar 

  62. Z. Meng, J.H. Seinfeld, P. Saxena, Y.P. Kim, Contribution of water to particulate mass in the south coast air basin. Aerosol Sci. Technol. 22, 111–123 (1995). https://doi.org/10.1080/02786829408959731

    Article  ADS  Google Scholar 

  63. C. Pilinis, J.H. Seinfeld, D. Grosjean, Water content of atmospheric aerosols. Atmos. Environ. 23, 1601–1606 (1989). https://doi.org/10.1016/0004-6981(89)90419-8

    Article  ADS  Google Scholar 

  64. S.G. Aggarwal, M. Mochida, Y. Kitamori, K. Kawamura, Chemical closure study on hygroscopic properties of urban aerosol particles in Sapporo. Japan. Environ. Sci. Technol. 41, 6920–6925 (2007). https://doi.org/10.1021/es063092m

    Article  ADS  Google Scholar 

  65. S.E. Shin, C.H. Jung, Y.P. Kim, Estimation of the optimal heated inlet air temperature for the beta-ray absorption method: analysis of the PM10 concentration difference by different methods in coastal areas. Adv. Environ. Res. 1, 69–82 (2012)

    Article  Google Scholar 

  66. K. Shukla, R. Agarwal, P. Patel, K. Singh, D. Soni, P. Johri, S.G. Aggarwal, V.K. Jain, Some Preliminary Results of Particulate Matter Metrology. (IJAPC, vol XX, No. 1–2, March and September 2020.)

    Google Scholar 

  67. I. Mori, Z. Sun, M. Ukachi, K. Nagano, C.W. McLeod, A.G. Cox, M. Nishikawa, Development and certification of the new NIES CRM 28: urban aerosols for the determination of multielements. Anal. Bioanal. Chem. 391, 1997–2003 (2008). https://doi.org/10.1007/s00216-008-2076-y

    Article  Google Scholar 

  68. https://www.gminsights.com/industry-analysis/gas-sensors-market-size

  69. Nicola Donato, Mariangela Latino and Giovanni Neri, in Carbon nanotubes, ed. By Stefano Bianco (IntechOpen Limited, London, 2011) p. 229

    Google Scholar 

  70. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088 (2010). https://doi.org/10.3390/s100302088

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Ms. Beena Gupta, Mrs. Saroj Gandhi, Mr. Alok Mukherjee, Dr. Khem Singh, Ms. Smriti Tiwari Singh, Mr. Devesh Kumar Shukla, Mr. Lalit Goswami, Mr. Jitender Kumar, Ms. Abha Shukla, Mr. M.L. Arora, Mr. Suresh Chandra Yadav, Mr. Saket Vihari and Ms. Kamla for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhemendra Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, C. et al. (2020). Metrology for Atmospheric Environment. In: Aswal, D.K. (eds) Metrology for Inclusive Growth of India. Springer, Singapore. https://doi.org/10.1007/978-981-15-8872-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8872-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8871-6

  • Online ISBN: 978-981-15-8872-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics