Skip to main content

Electrical and Electronics Metrology: From Quantum Standard to Applications in Industry and Strategic Sectors

  • Chapter
  • First Online:
Metrology for Inclusive Growth of India

Abstract

CSIR-NPL is the custodian of National standards of electrical and electronic parameters. These include DC parameters such as voltage, current and resistance; low frequency and high frequency impedance related quantities such as capacitance, inductance and AC resistance; AC/DC high voltage and AC high current; AC power and energy; and quantum standard which includes quantum hall resistance (QHR), quantum current (QC) and quantum nanophotonics (QN). The metrological traceability of the electrical and electronics parameters to SI units is derived from Josephson Voltage Standard (JVS), Quantum Hall Resistance (QHR) standard and frequency (time) standards; all of them are being maintained at CSIR-NPL with metrological precision at par with international standards. The traceability of the aforementioned parameters is disseminated through an unbroken chain of apex level calibrations and testing at par with international level to the industries and strategic sectors of the country to improve the quality of life, which in turn will lead to the inclusive growth of the country and economic development. R&D efforts on the development of quantum standards is a constant endeavour and continues to be at the forefront. Specifically, CSIR-NPL focuses on the development of quantum standards related to the unit of current (ampere), the unit of resistance (ohm) and quantum nanophotonics which aims for detection of few photons (or even single photons) using the novel concept of superconducting nanowire single photon detectors (SNSPD). Among these the research on QC needs special mention, as this will lead to realisation of the SI unit of electric current (ampere), the only unit out of the seven base units of SI system. The quantum current standard (QCS) realisation is bifurcated into two approaches, (i) based on the single electron tunnelling effect (SET) observable in semiconductor quantum dot (QD) structures and (ii) the quantum phase slip phenomenon (QPS) observable in superconducting nanowires of cross-sectional area of the order of coherence length of the system. The realisation of the resistance unit (ohm) is based on the quantum hall effect observable in semiconductor 2DEG structures such as GaAs/AlGaAs systems. Recently there has been tremendous evidence emerging for the use of monolayer graphene for the use of QHR metrology. CSIR-NPL also started the growth of “epitaxial graphene anchored on SiC” and have obtained encouraging results. The nano-photonics measurement research is also taken up actively for its applications to realize quantum standards for optical radiation and device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 9th Edition The International System of Units (2009)

    Google Scholar 

  2. B.D. Josephson, Possible new effects in superconductive tunnelling. Phys. Lett. 1(7), 251–253 (1962). https://doi.org/10.1016/0031-9163(62)91369-0

    Article  MATH  ADS  Google Scholar 

  3. F. Delahaye, B. Jeckelmann, Revised technical guidelines for reliable dc measurements of the quantized Hall resistance. Metrologia 40(5), 217–223 (2003). https://doi.org/10.1088/0026-1394/40/5/302

    Article  ADS  Google Scholar 

  4. BIPM: Key Comparison Database KCDB. https://www.bipm.org/kcdb/

  5. B. Ehtesham, P.S. Bist, T. John, Erratum to: development of an automated precision direct current source for generation of pA currents based on capacitance charging method at CSIR-NPL. MAPAN 32(1), 23–23 (2017). https://doi.org/10.1007/s12647-017-0204-x

    Article  Google Scholar 

  6. A.M. Thompson, D.G. Lampard, A new theorem in electrostatics and its application to calculable standards of capacitance. Nature 177(4515), 888–888 (1956). https://doi.org/10.1038/177888a0

    Article  ADS  Google Scholar 

  7. W.K. Clothier, A calculable standard of capacitance. Metrologia 1(2), 36–55 (1965). https://doi.org/10.1088/0026-1394/1/2/002

    Article  ADS  Google Scholar 

  8. L. Callegaro, in Electrical Impedance. CRC Press (2012)

    Google Scholar 

  9. S.A. Bryan Kibble, J. Schurr, in Coaxial Electrical Circuits for Interference-Free Measurements. IEEE (2011)

    Google Scholar 

  10. R.N. Jones, in The measurement of lumped parameter impedance: A Metrology Guide. National Bureau of Standards (1974)

    Google Scholar 

  11. F.L. Hermach , R.F. Dziuba, in Precision Measurement and Calibration: Selected NBS Papers on ElectricityLow Frequency. National Bureau of Standards (U.S.) (1968)

    Google Scholar 

  12. L. Marais et al., Comparison of standards for the calibration of voltage, current and resistance meters. Metrologia 55(1A), 01005–01005 (2018). https://doi.org/10.1088/0026-1394/55/1A/01005

    Article  ADS  Google Scholar 

  13. N. Fletcher et al., Bilateral comparison of 1 Ω and 10 kΩ standards (ongoing BIPM key comparisons BIPM.EM-K13.a and 13.b) between the NPLI (India) and the BIPM. Metrologia 56(1A), 01007–01007 (2019). https://doi.org/10.1088/0026-1394/56/1A/01007

    Article  ADS  Google Scholar 

  14. M. Saleem, M.A. Ansari, A.K. Saxena, N. Fletcher, R. Goebel, M. Stock, Bilateral comparison of 10 pF capacitance standards (ongoing BIPM key comparison BIPM.EM-K14.a) between the NPLI and the BIPM, July 2010–May 2011. Metrologia 52(1A), 01015–01015 (2015). https://doi.org/10.1088/0026-1394/52/1A/01015

    Article  ADS  Google Scholar 

  15. S. Babita, B. Khurana, S. Kumar, A.K. Saxena, Evaluation of four-terminal-pair capacitance standards using electrical equivalent circuit model. Measurement 73, 121–126 (2015). https://doi.org/10.1016/j.measurement.2015.05.003

    Article  Google Scholar 

  16. S. Singh, T. John, Automated module for characterization of reference standards of capacitance by impedance-matrix method. Turkish J. Electr. Eng. Comput. Sci. 25, 4142–4148 (2017). https://doi.org/10.3906/elk-1611-39

    Article  Google Scholar 

  17. S. Babita, B. Khurana, T. John, Measurement automation to implement evaluation procedure of four-terminal-pair capacitance standards using S-parameters. MAPAN 32(3), 175–181 (2017). https://doi.org/10.1007/s12647-017-0211-y

    Article  Google Scholar 

  18. S. Singh, S. Kumar, Babita, T. John, Realization of four-terminal-pair capacitors as reference standards of impedance at high frequency using impedance-matrix method. IEEE Trans. Instrum. Meas. 66(8), 2129–2135 (2017). https://doi.org/10.1109/TIM.2017.2673098

    Article  Google Scholar 

  19. Satish, S. Kumar, Babita, T. John, A.K. Saxena, Evaluation of air dielectric four-terminal-pair capacitance standards using resonance frequency of impedance elements. Measurement 100, 176–182 (2017). https://doi.org/10.1016/j.measurement.2016.12.052

  20. J. B. Shaik, V. Ganesh, A power system restoration method using voltage source converter–high-voltage direct current technology, aided by time-series neural network with firefly algorithm. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04459-5

  21. M.J. Pérez-Molina, D.M. Larruskain, P. Eguía López, G. Buigues, Challenges for protection of future HVDC grids. Front. Energy Res. 8, (2020). https://doi.org/10.3389/fenrg.2020.00033

  22. “IEC 61869-1 (2007) Instrument transformers part 1: general requirements (2007). https://webstore.iec.ch/home

  23. “IEC 61869-2 (2012) Instrument transformers —part 2: additional requirements for current transformers (2012). https://webstore.iec.ch/home

  24. “IEC 61869-3 (2011) Instrument transformers—part 3: additional requirements for inductive voltage transformers (2011). https://webstore.iec.ch/home

  25. IS 16227 (2016): Instrument transformers: part 1 general requirements (2016). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  26. IS 16227 (2015) Instrument transformers: part 3 additional requirements for inductive voltage transformers (2015)

    Google Scholar 

  27. “IS 16227 (2016) Instrument transformers: part 2 Additional requirements for current transformers (2016). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  28. S.R. Gupta, Calibration and measurement facilities for AC high current and high voltage ratio standards at NPL. MAPAN 24(1), 29–39 (2009). https://doi.org/10.1007/s12647-009-0006-x

    Article  Google Scholar 

  29. M.A. Ansari, L. Sridhar, M.K. Tamrakar, Shrikrishan, V.N. Ojha, Present status and future plan of ac high voltage and high current standards at CSIR-NPL. in The Abstracts of 9 th International Conference on Advances in Metrology (AdMet–2016), p. 31 (2016)

    Google Scholar 

  30. M.K. Mittal, L. Sridhar, M.K. Tamrakar, Shrikishan, R.P. Agarwal, S.S. Rajput, Innovative system for precision measurement of high voltage capacitance and tan δ. Int. J. Phys. Appl. Sci. 2(2), 41 (2015). [Online] Available http://ijmr.net.in/current-ijpas.php

  31. M.K. Tamrakar, L. Sridhar, Shrikrishan, M.A. Ansari, Effect of burden on potential transformer. in The Abstracts of 4th National Conference on Advances in Metrology (AdMet-2015) (2015)

    Google Scholar 

  32. L. Sridhar, M.K. Tamrakar, Shrikrishan, M.A. Ansari, Effect of burden on current transformer, in The Abstracts of 9th International Conference on Advances in Metrology (AdMet–2016) p. 132 (2016)

    Google Scholar 

  33. R.M. Silva et al., Optical current sensors for high power systems: a review. Appl. Sci. 2(3), 602–628 (2012). https://doi.org/10.3390/app2030602

    Article  Google Scholar 

  34. R. Thomas et al., Non-conventional instrument transformers enabling digital substations for future grid. in 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), May 2016, pp. 1–5. https://doi.org/10.1109/tdc.2016.7519930

  35. E. Mohns, G. Ramm, W.G. Kürten Ihlenfeld, L. Palafox, H. Moser, The PTB primary standard for electrical AC power. MAPAN 24(1), 15–19 (2009). https://doi.org/10.1007/s12647-009-0004-z

  36. IEC 62053-21 (2003) Electricity metering equipment (a.c.)—particular requirements—part 21: Static meters for active energy (classes 1 and (2003). https://webstore.iec.ch/home

  37. “IEC 62053-22 (2003) Electricity metering equipment (a.c.)—particular requirements—part 22: static meters for active energy (classes 0,2 S and 0,5 S) (2003). https://webstore.iec.ch/home

  38. “IS 13779 (1999) AC static watihour meters, class 1 and 2—specification (1999). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  39. "IS 14697 (1999) AC static transformer operated, watthour and var—hour meters, class 0.2 S and 0.5 S—Specification" (1999). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  40. “IS 13010 (2002) AC watthour meters, class 0.5, 1 and 2,” Specification (2002). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  41. “CBIP Technical report No.88 (with latest amendments) Specification for AC static Electrical Energy Meters.” [Online] Available http://www.cbip.org/

  42. H. Çayci, Final report on key comparison EURAMET.EM-K5.1 (EURAMET Project No. 687): comparison of 50/60 Hz power. Metrologia 48(1A), 01009–01009 (2011). https://doi.org/10.1088/0026-1394/48/1A/01009

    Article  ADS  Google Scholar 

  43. F. Leferink, C. Keyer, A. Melentjev, Static energy meter errors caused by conducted electromagnetic interference. IEEE Electromagn. Compat. Mag. 5(4), 49–55 (2016). https://doi.org/10.1109/MEMC.2016.7866234

    Article  Google Scholar 

  44. G. Leal Xavier, J.R. Macedo Junior, R. Ferreira Barata de Oliveira, L.T. Silva Oliveira, I. Nogueira Gondim, Performance analysis of active energy meters under non-sinusoidal conditions. IEEE Lat. Am. Trans. 18(04), 808–815 (2020) https://doi.org/10.1109/tla.2020.9082225

  45. “IEC 62052-11 (2003) Electricity metering equipment (AC)—general requirements, tests and test conditions—part 11: metering equipment (2003). https://webstore.iec.ch/home

  46. CISPR/CIS/I (2008-09-24, 6.0) Electromagnetic compatibility of information technology equipment, multimedia equipment and receivers. https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1444

  47. “IS 6842 (1997) Limits for electromagnetic interference (1997). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  48. “IS 16444 (2017) AC static transformer operated watthour and var—hour smart meters, class 0.2 S, 0.5 S and 1.0 S: part 2 specification transformer operated smart meters.” https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  49. “IS 16444 (2015) AC static direct connected watthour smart meter class 1 and 2—specification (2015)

    Google Scholar 

  50. “IS 15959 (Part 1), Data exchange for electricity meter—reading, tariff and load control—companion specification, vol. 4 (Electrotechnical Department, 17.220.20, 2011). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  51. “IS 15959 : Part 2 (2016) Data exchange for electricity meter reading, tarif and load control—companion specification: part 2 smart meter (2016). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  52. “IS 15959 : Part 3 (2017) Data exchange for electricity meter reading, tariff and load contr—- Companion specification: part 3 smart meter (Transformer Operated KWh And KVarh, Class 0.2 S, 0.5 S And 1.0 S) (2017). https://www.services.bis.gov.in:8071/php/BIS/PublishStandards/published/

  53. A. Tzalenchuk et al., Towards a quantum resistance standard based on epitaxial graphene. Nat. Nanotechnol. 5(3), 186–189 (2010). https://doi.org/10.1038/nnano.2009.474

    Article  ADS  Google Scholar 

  54. T.J.B.M. Janssen et al., Graphene, universality of the quantum hall effect and redefinition of the SI system. New J. Phys. 13(9), 093026 (2011). https://doi.org/10.1088/1367-2630/13/9/093026

    Article  ADS  Google Scholar 

  55. T.J.B.M. Janssen et al., Precision comparison of the quantum hall effect in graphene and gallium arsenide. Metrologia 49(3), 294–306 (2012). https://doi.org/10.1088/0026-1394/49/3/294

    Article  ADS  Google Scholar 

  56. T.J.B.M. Janssen, A. Tzalenchuk, S. Lara-Avila, S. Kubatkin, V.I. Fal’ko, Quantum resistance metrology using graphene. Reports Prog. Phys, 76(10), 104501 (2013). https://doi.org/10.1088/0034-4885/76/10/104501

  57. R. Ribeiro-Palau et al., Quantum Hall resistance standard in graphene devices under relaxed experimental conditions. Nat. Nanotechnol. 10(11), 965–971 (2015). https://doi.org/10.1038/nnano.2015.192

    Article  ADS  Google Scholar 

  58. F. Lafont et al., Quantum hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide. Nat. Commun. 6(1), 6806 (2015). https://doi.org/10.1038/ncomms7806

    Article  ADS  Google Scholar 

  59. M. Kruskopf, R.E. Elmquist, Epitaxial graphene for quantum resistance metrology. Metrologia 55(4), R27–R36 (2018). https://doi.org/10.1088/1681-7575/aacd23

    Article  ADS  Google Scholar 

  60. K.S. Novoselov, Electric field effect in atomically thin carbon films, Science (80-.) 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

  61. A.C. Ferrari et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015). https://doi.org/10.1039/C4NR01600A

    Article  ADS  Google Scholar 

  62. K.S. Novoselov et al., Room-temperature quantum hall effect in graphene. Science (80-.) 315(5817), 1379–1379 (2007). https://doi.org/10.1126/science.1137201

  63. J. Guignard, D. Leprat, D.C. Glattli, F. Schopfer, W. Poirier, Quantum hall effect in exfoliated graphene affected by charged impurities: metrological measurements. Phys. Rev. B 85(16), 165420 (2012). https://doi.org/10.1103/PhysRevB.85.165420

    Article  ADS  Google Scholar 

  64. F. Lafont et al., Anomalous dissipation mechanism and Hall quantization limit in polycrystalline graphene grown by chemical vapor deposition. Phys. Rev. B 90(11), 115422 (2014). https://doi.org/10.1103/PhysRevB.90.115422

    Article  ADS  Google Scholar 

  65. C. Virojanadara, M. Syväjarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian, Homogeneous large-area graphene layer growth on 6 H-SiC. Phys. Rev. B 78(24), 245403 (2008). https://doi.org/10.1103/PhysRevB.78.245403

    Article  ADS  Google Scholar 

  66. K.V. Emtsev et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8(3), 203–207 (2009). https://doi.org/10.1038/nmat2382

    Article  ADS  Google Scholar 

  67. W.A. de Heer et al., Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. 108(41), 16900–16905 (2011). https://doi.org/10.1073/pnas.1105113108

    Article  ADS  Google Scholar 

  68. M. Kruskopf et al., Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC. 2D Mater. 3(4), 041002 (2016). https://doi.org/10.1088/2053-1583/3/4/041002

  69. Y. Yang et al., Epitaxial graphene homogeneity and quantum hall effect in millimeter-scale devices. Carbon N. Y. 115, 229–236 (2017). https://doi.org/10.1016/j.carbon.2016.12.087

    Article  Google Scholar 

  70. T.J.B.M. Janssen et al., Operation of graphene quantum hall resistance standard in a cryogen-free table-top system. 2D Mater. 2(3), 035015 (2015). https://doi.org/10.1088/2053-1583/2/3/035015

  71. J. Brun-Picard, S. Djordjevic, D. Leprat, F. Schopfer, W. Poirier, Practical quantum realization of the ampere from the elementary charge. Phys. Rev. X 6(4), 041051 (2016). https://doi.org/10.1103/PhysRevX.6.041051

    Article  Google Scholar 

  72. S. Sassine et al., The quantum metrology triangle experiment: quantization tests of an electron pump. Sba Control. Automação Soc. Bras. Autom. 21(6), 609–615 (2010). https://doi.org/10.1590/S0103-17592010000600006

    Article  Google Scholar 

  73. H. Scherer, B. Camarota, Quantum metrology triangle experiments: a status review. Meas. Sci. Technol. 23(12), 124010 (2012). https://doi.org/10.1088/0957-0233/23/12/124010

    Article  ADS  Google Scholar 

  74. N.-H. Kaneko, S. Nakamura, Y. Okazaki, A review of the quantum current standard. Meas. Sci. Technol. 27(3), 032001 (2016). https://doi.org/10.1088/0957-0233/27/3/032001

    Article  ADS  Google Scholar 

  75. D.V. Averin, K.K. Likharev, Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62(3–4), 345–373 (1986). https://doi.org/10.1007/BF00683469

    Article  ADS  Google Scholar 

  76. T.A. Fulton, G.J. Dolan, Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59(1), 109–112 (1987). https://doi.org/10.1103/PhysRevLett.59.109

    Article  ADS  Google Scholar 

  77. P. Delsing, K.K. Likharev, L.S. Kuzmin, T. Claeson, Time-correlated single-electron tunneling in one-dimensional arrays of ultrasmall tunnel junctions. Phys. Rev. Lett. 63(17), 1861–1864 (1989). https://doi.org/10.1103/PhysRevLett.63.1861

    Article  ADS  Google Scholar 

  78. H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret, Single-electron pump based on charging effects. Europhys. Lett. 17(3), 249–254 (1992). https://doi.org/10.1209/0295-5075/17/3/011

    Article  ADS  Google Scholar 

  79. M.W. Keller, J.M. Martinis, N.M. Zimmerman, A.H. Steinbach, Accuracy of electron counting using a 7-junction electron pump. Appl. Phys. Lett. 69(12), 1804–1806 (1996). https://doi.org/10.1063/1.117492

    Article  ADS  Google Scholar 

  80. T.A. Fulton, P.L. Gammel, L.N. Dunkleberger, Determination of Coulomb-blockade resistances and observation of the tunneling of single electrons in small-tunnel-junction circuits. Phys. Rev. Lett. 67(22), 3148–3151 (1991). https://doi.org/10.1103/PhysRevLett.67.3148

    Article  ADS  Google Scholar 

  81. V.A. Krupenin, S.V. Lotkhov, D.E. Presnov, Instability of single-electron memory at low temperatures in Al/AlOx/Al structures. J. Exp. Theor. Phys. 84(1), 190–196 (1997). https://doi.org/10.1134/1.558147

    Article  ADS  Google Scholar 

  82. Y. Ono, Y. Takahashi, Electron pump by a combined single-electron/field-effect- transistor structure. Appl. Phys. Lett. 82(8), 1221–1223 (2003). https://doi.org/10.1063/1.1556558

    Article  ADS  Google Scholar 

  83. S.J. Wright et al., Enhanced current quantization in high-frequency electron pumps in a perpendicular magnetic field. Phys. Rev. B 78(23), 233311 (2008). https://doi.org/10.1103/PhysRevB.78.233311

    Article  ADS  Google Scholar 

  84. S.P. Giblin et al., Towards a quantum representation of the ampere using single electron pumps. Nat. Commun. 3(1), 930 (2012). https://doi.org/10.1038/ncomms1935

    Article  ADS  Google Scholar 

  85. M. Seo et al., Improvement of electron pump accuracy by a potential-shape-tunable quantum dot pump. Phys. Rev. B 90(8), 085307 (2014). https://doi.org/10.1103/PhysRevB.90.085307

    Article  ADS  Google Scholar 

  86. D. Drung, C. Krause, U. Becker, H. Scherer, F.J. Ahlers, Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy. Rev. Sci. Instrum. 86(2), 024703 (2015). https://doi.org/10.1063/1.4907358

    Article  ADS  Google Scholar 

  87. K. Bladh et al., Comparison of cryogenic filters for use in single electronics experiments. Rev. Sci. Instrum. 74(3), 1323–1327 (2003). https://doi.org/10.1063/1.1540721

    Article  ADS  Google Scholar 

  88. J.E. Mooij et al., Superconductor–insulator transition in nanowires and nanowire arrays. New J. Phys. 17(3), 033006 (2015). https://doi.org/10.1088/1367-2630/17/3/033006

    Article  ADS  Google Scholar 

  89. Z.M. Wang, J.S. Lehtinen, K.Y. Arutyunov, Towards quantum phase slip based standard of electric current. Appl. Phys. Lett. 114(24), 242601 (2019). https://doi.org/10.1063/1.5092271

    Article  ADS  Google Scholar 

  90. A.J. Kerman, Flux–charge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors. New J. Phys. 15(10), 105017 (2013). https://doi.org/10.1088/1367-2630/15/10/105017

    Article  MathSciNet  ADS  Google Scholar 

  91. J.E. Mooij, Y.V. Nazarov, Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2(3), 169–172 (2006). https://doi.org/10.1038/nphys234

    Article  Google Scholar 

  92. I. Schneider, K. Kronfeldner, T.I. Baturina, C. Strunk, Quantum phase slips and number-phase duality in disordered TiN nanostrips. Phys. Rev. B 99(9), 094522 (2019). https://doi.org/10.1103/PhysRevB.99.094522

    Article  ADS  Google Scholar 

  93. O.V. Astafiev et al., Coherent quantum phase slip. Nature 484(7394), 355–358 (2012). https://doi.org/10.1038/nature10930

    Article  ADS  Google Scholar 

  94. W. Zhao, X. Liu, M.H.W. Chan, Quantum phase slips in 6 mm long niobium nanowire. Nano Lett. 16(2), 1173–1178 (2016). https://doi.org/10.1021/acs.nanolett.5b04473

    Article  ADS  Google Scholar 

  95. A. Bawa, R. Jha, S. Sahoo, Tailoring phase slip events through magnetic doping in superconductor-ferromagnet composite films. Sci. Rep. 5(1), 13459 (2015). https://doi.org/10.1038/srep13459

    Article  ADS  Google Scholar 

  96. A. Bawa, A. Gupta, S. Singh, V.P.S. Awana, S. Sahoo, Ultrasensitive interplay between ferromagnetism and superconductivity in NbGd composite thin films. Sci. Rep. 6(1), 18689 (2016). https://doi.org/10.1038/srep18689

    Article  ADS  Google Scholar 

  97. C.H. Webster, J.C. Fenton, T.T. Hongisto, S.P. Giblin, A.B. Zorin, P.A. Warburton, NbSi nanowire quantum phase-slip circuits: Dc supercurrent blockade, microwave measurements, and thermal analysis. Phys. Rev. B 87(14), 144510 (2013). https://doi.org/10.1103/PhysRevB.87.144510

    Article  ADS  Google Scholar 

  98. B. Gajar et al., Substrate mediated nitridation of niobium into superconducting Nb2N thin films for phase slip study. Sci. Rep. 9(1), 8811 (2019). https://doi.org/10.1038/s41598-019-45338-1

    Article  ADS  Google Scholar 

  99. J.C. Fenton, J. Burnett, Superconducting NbN nanowires and coherent quantum phase-slips in DC transport. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016). https://doi.org/10.1109/TASC.2016.2531005

    Article  Google Scholar 

  100. J.T. Peltonen et al., Coherent flux tunneling through NbN nanowires. Phys. Rev. B 88(22), 220506 (2013). https://doi.org/10.1103/PhysRevB.88.220506

    Article  ADS  Google Scholar 

  101. R.P. Aloysius et al., Superconducting properties of tungsten nanowires fabricated using focussed ion beam technique. Nanotechnology 30(40), 405001 (2019). https://doi.org/10.1088/1361-6528/ab2d6d

    Article  Google Scholar 

  102. A. Jafari-Salim, A. Eftekharian, A.H. Majedi, M.H. Ansari, Stimulated quantum phase slips from weak electromagnetic radiations in superconducting nanowires. AIP Adv. 6(3), 035209 (2016). https://doi.org/10.1063/1.4944482

    Article  ADS  Google Scholar 

  103. B. Bhattacharyya, V.P.S. Awana, T.D. Senguttuvan, V.N. Ojha, S. Husale, Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies. Sci. Rep. 8(1), 17237 (2018). https://doi.org/10.1038/s41598-018-35424-1

    Article  ADS  Google Scholar 

  104. H. Bartolf et al., Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures. Phys. Rev. B 81(2), 024502 (2010). https://doi.org/10.1103/PhysRevB.81.024502

    Article  ADS  Google Scholar 

  105. C. Delacour, B. Pannetier, J.-C. Villegier, V. Bouchiat, Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection. Nano Lett. 12(7), 3501–3506 (2012). https://doi.org/10.1021/nl3010397

    Article  ADS  Google Scholar 

  106. K.Y. Arutyunov, J.S. Lehtinen, T. Rantala, The quantum phase slip phenomenon in superconducting nanowires with high-impedance environment. J. Supercond. Nov. Magn. 29(3), 569–572 (2016). https://doi.org/10.1007/s10948-015-3298-9

    Article  Google Scholar 

  107. S.P. Giblin, M.-H. Bae, N. Kim, Y.-H. Ahn, M. Kataoka, Robust operation of a GaAs tunable barrier electron pump. Metrologia 54(3), 299–306 (2017). https://doi.org/10.1088/1681-7575/aa634c

    Article  ADS  Google Scholar 

  108. H. Takesue et al., Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1(6), 343–348 (2007). https://doi.org/10.1038/nphoton.2007.75

    Article  ADS  Google Scholar 

  109. R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photon 3(12), 696–705 (2009). https://doi.org/10.1038/nphoton.2009.230

    Article  ADS  Google Scholar 

  110. G. N. Gol’tsman et al., Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001). https://doi.org/10.1063/1.1388868

  111. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012). https://doi.org/10.1088/0953-2048/25/6/063001

    Article  ADS  Google Scholar 

  112. S. Yadav, D.K. Aswal, Redefined SI units and their implications. MAPAN 35(1), 1–9 (2020). https://doi.org/10.1007/s12647-020-00369-2

    Article  Google Scholar 

  113. M. Singh, R. Chaujar, R.K. Rakshit, Cryogenic measurement set-up for characterization of superconducting nano structures for single-photon detection applications. Curr. Sci. 115(6), 1085 (2018). https://doi.org/10.18520/cs/v115/i6/1085-1090

    Article  Google Scholar 

  114. M. López, H. Hofer, S. Kück, Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique. J. Mod. Opt. 62(20), 1732–1738 (2015). https://doi.org/10.1080/09500340.2015.1021724

    Article  ADS  Google Scholar 

  115. Smart Meter National Programme (SMNP). https://www.eeslindia.org/content/raj/eesl/en/home.html

  116. World Economic Outlook. https://www.imf.org/external/index.htm

  117. IEA World Energy Balances (2019). https://www.iea.org/

  118. Country’s Share of CO2 Emissions. https://www.ucsusa.org/resources/each-countrys-share-co2-emissions

  119. 19th Electric Power Survey (EPS) Report. [Online] Available http://cea.nic.in/psandlf.html

  120. Power Sector at a Glance ALL INDIA. https://powermin.nic.in/en/content/power-sector-glance-all-india

  121. S. Sorrell, Reducing energy demand: a review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 47, 74–82 (2015). https://doi.org/10.1016/j.rser.2015.03.002

    Article  Google Scholar 

  122. R.F. Hirsh, J.G. Koomey, Electricity consumption and economic growth: a new relationship with significant consequences? Electr. J. 28(9), 72–84 (2015). https://doi.org/10.1016/j.tej.2015.10.002

    Article  Google Scholar 

  123. D.M. Grueneich, The next level of energy efficiency: the five challenges ahead. Electr. J. 28(7), 44–56 (2015). https://doi.org/10.1016/j.tej.2015.07.001

    Article  Google Scholar 

  124. “New NIST Service: Extending Traceable Measurements Inside the Human Body.” https://www.nist.gov/news-events/news/2018/03/new-nist-service-extending-traceable-measurements-inside-human-body

  125. “Magnetic Resonance Measurements for MRI Biomarkers.” https://www.nist.gov/pml/applied-physics-division/products-services/magnetic-resonance-measurements-mri-biomarkers

  126. “Magnetic Resonance Imaging (MRI) Biomarker Measurement Service.” https://www.nist.gov/programs-projects/magnetic-resonance-imaging-mri-biomarker-measurement-service

  127. R.S.H. Istepanian, S. Hu, N.Y. Philip, A. Sungoor, The potential of internet of m-health things "m-IoT" for non-invasive glucose level sensing. in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 2011, pp. 5264–5266 (2011). https://doi.org/10.1109/iembs.2011.6091302

  128. A. Alarcón-Paredes, V. Francisco-García, I.P. Guzmán-Guzmán, J. Cantillo-Negrete, R.E. Cuevas-Valencia, G.A. Alonso-Silverio, An IoT-based non-invasive glucose level monitoring system using raspberry pi. Appl. Sci. 9(15), 3046 (2019). https://doi.org/10.3390/app9153046

    Article  Google Scholar 

  129. R.P. Singh, M. Javaid, A. Haleem, R. Suman, Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 14(4), 521–524 (2020). https://doi.org/10.1016/j.dsx.2020.04.041

    Article  Google Scholar 

  130. S. Ramakrishna, L. Tian, C. Wang, S. Liao, W.E. Teo, Safety testing of a new medical device. in Medical Devices (Elsevier, 2015) pp. 137–153

    Google Scholar 

  131. “IEC 60601-1-11:2015 Medical electrical equipment—part 1-11: general requirements for basic safety and essential performance—collateral standard: requirements for medical electrical equipment and medical electrical systems used in the home healthcare e.” https://www.iso.org/home.html

  132. “IEC 61010-1:2010 Safety requirements for electrical equipment for measurement, control, and laboratory use—part 1: general requirements.” https://webstore.iec.ch/publication/4279

  133. “ISO 80601-2-12:2011 Medical electrical equipment—part 2-12: particular requirements for basic safety and essential performance of critical care ventilators.” https://www.iso.org

  134. “ISO 80601-2-12:2020 Medical electrical equipment—part 2-12: particular requirements for basic safety and essential performance of critical care ventilators.” https://www.iso.org/

Download references

Acknowledgements

The authors would like to acknowledge Mr. Anoop Singh Yadav, Mr. Prakash Singh, Ms. Usha Kiran, Ms. Poonam Sethi Bisht, Ms. Ashmeet Kaur Uppal, Mr. Sachin Kumar, Mr. Harish Kumar, Mr. Kul Bhushan Ravat, Mr. L. Sridhar, Mr. M. K. Tamrakar, Mr. Shrikrishan, Anish M Bhagav and Rajeev Sharma for their continuous efforts in maintaining traceability chain for electrical and electronics parameters. We deeply appreciate their continuous efforts in providing metrological services to the public and private users. We would like to thank other staff members and students of CSIR-NPL for their contribution to scientific society which is unforgettable. Finally, the authors also gratefully recognize the needful discussion with and insight from Dr. Sushil Kumar and Dr. D K Aswal for finalizing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Somkuwar, A.S. et al. (2020). Electrical and Electronics Metrology: From Quantum Standard to Applications in Industry and Strategic Sectors. In: Aswal, D.K. (eds) Metrology for Inclusive Growth of India. Springer, Singapore. https://doi.org/10.1007/978-981-15-8872-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8872-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8871-6

  • Online ISBN: 978-981-15-8872-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics