Skip to main content

Glycosides from Natural Sources in the Treatment of Diabetes Mellitus

Abstract

Diabetes is one of the principal causes of death in developed and developing countries. Many synthetic drugs are being used for the treatment of diabetes. But these drugs have many adverse effects. Hence there is an immediate requirement of new therapies that can be useful for better management of diabetes. From ancient times, herbal drugs are well accepted for their therapeutic values in different disease conditions. Natural products obtained from medicinal plants can be one of the best options for the treatment of various diseases including diabetes. Plants synthesize various secondary metabolites like terpenoids, saponins, tannins, flavonoids, anthraquinones, alkaloids, and glycosides. Glycosides consist of sugar (glycone) moiety joined to a non-sugar moiety (aglycone) via a glycosidic bond. Many plants synthesize glycosides, which can be hydrolyzed to give glycone and aglycone part by enzyme hydrolysis. Various glycosides as well as aglycones are reported to have many biological activities. Glycosides like rutin, puerarin, gymnemic acid I, and stevioside have been reported for significant antidiabetic activity. Aglycones like securigenin, strictinin, and christinin-A have been reported for their antidiabetic activity. The mechanism of their antidiabetic activity involves stimulation of insulin secretion, inhibition of α-amylase, α-glucosidase, and tyrosine phosphatase 1B enzymes involved in glycemic control. The present book chapter focuses on the effect of various plant derived glycosides and aglycones in diabetes.

Keywords

  • Antidiabetic activity
  • Glycosylamine
  • O-glycoside
  • C-glycoside
  • Thioglycoside
  • Rutin
  • Puerarin
  • Gymnemic acid I
  • Securigenin

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-8791-7_5
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-8791-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10

References

  1. World Health Organization (2019) In: Classif. diabetes. https://apps.who.int/iris/handle/10665/325182. Accessed 5 Sept 2019

  2. Leslie RD, Palmer J, Schloot NC, Lernmark A (2016) Diabetes at the crossroads: relevance of disease classification to pathophysiology and treatment. Diabetologia 59:13–20

    CrossRef  CAS  PubMed  Google Scholar 

  3. Skyler JS, Bakris GL, Bonifacio E et al (2017) Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 66:241–255

    CrossRef  CAS  PubMed  Google Scholar 

  4. Global Report On Diabetes (2016) The World Health Organization Library. Cataloguing-in-publication data global report on diabetes

    Google Scholar 

  5. International Diabetes Federation Diabetes Atlas (2019) 9th edition

    Google Scholar 

  6. Guerriero G, Berni R, Muñoz-Sanchez JA et al (2018) Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes (Basel) 9:309

    CrossRef  Google Scholar 

  7. Brunetton J (2008) Pharmacognosy, phytochemistry, medicinal plants (2nd ed. - retirage broch). Lavoisier, Paris

    Google Scholar 

  8. Bartnik M, Facey PC (2017) Glycosides. In: Pharmacognosy: fundamentals, applications and strategy. Elsevier Inc., London, pp 101–161

    CrossRef  Google Scholar 

  9. Kim CS, Oh J, Subedi L et al (2018) Two new phenolic glycosides from Sorbus commixta. Chem Pharm Bull 66:839–842. https://doi.org/10.1248/cpb.c18-00280

    CrossRef  CAS  Google Scholar 

  10. Huh JY, Lee S, Ma EB et al (2018) The effects of phenolic glycosides from Betula platyphylla var. japonica on adipocyte differentiation and mature adipocyte metabolism. J Enzyme Inhib Med Chem 33:1167–1173. https://doi.org/10.1080/14756366.2018.1491846

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shan SJ, Zhang PP, Luo J, Kong LY (2018) Two new phenolic glycosides isolated from ginkgo seeds. Chin J Nat Med 16:505–508. https://doi.org/10.1016/S1875-5364(18)30086-4

    CrossRef  PubMed  Google Scholar 

  12. Cha JM, Suh WS, Lee TH et al (2017) Phenolic glycosides from Capsella bursa-pastoris (L.) medik and their anti-inflammatory activity. Molecules 22:1023. https://doi.org/10.3390/molecules22061023

    CrossRef  CAS  PubMed Central  Google Scholar 

  13. Lastra RA, Kenkel NC, Daayf F (2017) Phenolic glycosides in Populus tremuloides and their effects on long-term ungulate browsing. J Chem Ecol 43:1023–1030. https://doi.org/10.1007/s10886-017-0895-z

    CrossRef  CAS  PubMed  Google Scholar 

  14. Ma J, Li CJ, Yang JZ et al (2017) New phenylpropanoid and coumarin glycosides from the stems of Hydrangea paniculata Sieb. Molecules 22:133. https://doi.org/10.3390/molecules22010133

    CrossRef  CAS  PubMed Central  Google Scholar 

  15. Yu J, Song X, Wang D et al (2017) Five new chromone glycosides from Scindapsus officinalis (Roxb.) Schott. Fitoterapia 122:101–106. https://doi.org/10.1016/j.fitote.2017.09.002

    CrossRef  CAS  PubMed  Google Scholar 

  16. Ma SY, Shi LG, Gu ZB et al (2018) Two new chromone glycosides from the roots of Saposhnikovia divaricata. Chem Biodivers 15:e1800253. https://doi.org/10.1002/cbdv.201800253

    CrossRef  CAS  PubMed  Google Scholar 

  17. Sun Y, Gao M, Chen H et al (2019) Six new Coumarin glycosides from the aerial parts of Gendarussa vulgaris. Molecules 24:1456. https://doi.org/10.3390/molecules24081456

    CrossRef  CAS  PubMed Central  Google Scholar 

  18. Yao J, He H, Xue J et al (2019) Mori Ramulus (Chin.Ph.)—the dried twigs of Morus alba L./Part 1: discovery of two novel coumarin glycosides from the anti-hyperuricemic ethanol extract. Molecules 24:629. https://doi.org/10.3390/molecules24030629

    CrossRef  CAS  PubMed Central  Google Scholar 

  19. Warashina T, Miyase T (2017) Flavonoid glycosides from Sedum bulbiferum. Chem Pharm Bull 85:1199–1204. https://doi.org/10.1248/cpb.c17-00678

    CrossRef  Google Scholar 

  20. Vien LT, Van QTT, Hanh TTH et al (2017) Flavonoid glycosides from Barringtonia acutangula. Bioorganic Med Chem Lett 27:3776–3781. https://doi.org/10.1016/j.bmcl.2017.06.066

    CrossRef  CAS  Google Scholar 

  21. Jiang XL, Wang L, Wang EJ et al (2018) Flavonoid glycosides and alkaloids from the embryos of Nelumbo nucifera seeds and their antioxidant activity. Fitoterapia 125:184–190. https://doi.org/10.1016/j.fitote.2018.01.009

    CrossRef  CAS  PubMed  Google Scholar 

  22. Tagousop CN, Tamokou JDD, Ekom SE et al (2018) Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18:1–10. https://doi.org/10.1186/s12906-018-2321-7

    CrossRef  CAS  Google Scholar 

  23. Li F, Du BW, Lu DF et al (2017) Flavonoid glycosides isolated from Epimedium brevicornum and their estrogen biosynthesis-promoting effects. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-08203-7

    CrossRef  CAS  Google Scholar 

  24. Cheng FR, Cui HX, Fang JL et al (2019) Ameliorative effect and mechanism of the purified anthraquinone-glycoside preparation from Rheum palmatum L. on type 2 diabetes mellitus. Molecules 24:1454. https://doi.org/10.3390/molecules24081454

    CrossRef  CAS  PubMed Central  Google Scholar 

  25. El-Kashak WA, Elshamy AI, Mohamed TA et al (2017) Rumpictuside a: unusual 9,10-anthraquinone glucoside from Rumex pictus Forssk. Carbohydr Res 448:74–78. https://doi.org/10.1016/j.carres.2017.05.023

    CrossRef  CAS  PubMed  Google Scholar 

  26. Chen T, Li H, Zou D et al (2016) Separation of three anthraquinone glycosides including two isomers by preparative high-performance liquid chromatography and high-speed countercurrent chromatography from Rheum tanguticum maxim. ex Balf. J Sep Sci 39:3105–3112. https://doi.org/10.1002/jssc.201600487

    CrossRef  CAS  PubMed  Google Scholar 

  27. Anandhi D, Pandit VR, Kadhiravan T et al (2019) Cardiac arrhythmias, electrolyte abnormalities and serum cardiac glycoside concentrations in yellow oleander (Cascabela thevetia) poisoning–a prospective study. Clin Toxicol 57:104–111. https://doi.org/10.1080/15563650.2018.1499930

    CrossRef  CAS  Google Scholar 

  28. Kruakaew S, Seeka C, Lhinhatrakool T et al (2017) Cytotoxic cardiac glycoside constituents of Vallaris glabra leaves. J Nat Prod 80:2987–2996. https://doi.org/10.1021/acs.jnatprod.7b00554

    CrossRef  CAS  PubMed  Google Scholar 

  29. Ren Y, Chen W-L, Lantvit DD et al (2017) Cardiac glycoside constituents of Streblus asper with potential antineoplastic activity HHS public access. J Nat Prod 80:648–658. https://doi.org/10.1021/acschembio.5b01018

    CrossRef  CAS  PubMed  Google Scholar 

  30. Anderson SE, Barton CE (2017) The cardiac glycoside convallatoxin inhibits the growth of colorectal cancer cells in a p53-independent manner. Mol Genet Metab Rep 13:42–45. https://doi.org/10.1016/j.ymgmr.2017.07.011

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  31. Knittel DN, Lorenz P, Huber U et al (2016) Characterization of the cardiac glycoside and lipid profiles of Strophanthus kombé Oliv. Seeds. Zeitschrift fur Naturforsch Sect C J Biosci 71:55–64. https://doi.org/10.1515/znc-2015-0186

    CrossRef  CAS  Google Scholar 

  32. Saleem M, Asif J, Asif M, Saleem U (2018) Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: an updated review. Anti Cancer Agents Med Chem 18:1650–1655. https://doi.org/10.2174/1871520618666180105161136

    CrossRef  CAS  Google Scholar 

  33. Misihairabgwi JM, Ishola A, Sulyok M, Krska R (2019) Mycotoxin and cyanogenic glycoside assessment of the traditional leafy vegetables mutete and omboga from Namibia. Food Addit Contam Part B Surveill 12:245–251. https://doi.org/10.1080/19393210.2019.1616829

    CrossRef  CAS  PubMed  Google Scholar 

  34. Pandey AK, Madhu P, Bhat BV (2019) Down-regulation of CYP79A1 gene through antisense approach reduced the cyanogenic glycoside Dhurrin in [Sorghum bicolor (L.) Moench] to improve fodder quality. Front Nutr 6:122. https://doi.org/10.3389/fnut.2019.00122

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim CS, Oh J, Subedi L et al (2018) Rare thioglycosides from the roots of Wasabia japonica. J Nat Prod 81:2129–2133. https://doi.org/10.1021/acs.jnatprod.8b00570

    CrossRef  CAS  PubMed  Google Scholar 

  36. Soundararajan P, Kim JS (2018) Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 23:2983

    CrossRef  PubMed Central  Google Scholar 

  37. Xu L, Nagata N, Ota T (2018) Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocytes 7:218–225

    CrossRef  CAS  Google Scholar 

  38. Vanduchova A, Anzenbacher P, Anzenbacherova E (2019) Isothiocyanate from broccoli, sulforaphane, and its properties. J Med Food 22:121–126

    CrossRef  CAS  PubMed  Google Scholar 

  39. Bone K, Mills S (2012) Principles and practice of phytotherapy: modern herbal medicine. Elsevier Ltd, London

    Google Scholar 

  40. Khattak S, Khan H (2016) Phyto-glycosides as therapeutic target in the treatment of diabetes. mini-reviews. Med Chem 18:208–215. https://doi.org/10.2174/1389557516666160909112751

    CrossRef  CAS  Google Scholar 

  41. Frutos MJ, Rincón-Frutos L, Valero-Cases E (2018) Rutin. In: Nonvitamin and nonmineral nutritional supplements. Elsevier, London, pp 111–117

    Google Scholar 

  42. Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharm J 25:149–164

    CrossRef  PubMed  Google Scholar 

  43. Lu CL, Zheng Q, Shen Q et al (2017) Uncovering the relationship and mechanisms of Tartary buckwheat (Fagopyrum tataricum) and type II diabetes, hypertension, and hyperlipidemia using a network pharmacology approach. Peer J 2017:e4042. https://doi.org/10.7717/peerj.4042

    CrossRef  CAS  Google Scholar 

  44. Kreft S, Knapp M, Kreft I (1999) Extraction of rutin from buckwheat (Fagopyrum esculentum moench) seeds and determination by capillary electrophoresis. J Agric Food Chem 47:4649–4652. https://doi.org/10.1021/jf990186p

    CrossRef  CAS  PubMed  Google Scholar 

  45. Kamalakkannan N, Prince PSM (2006) Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol Cell Biochem 293:211–219. https://doi.org/10.1007/s11010-006-9244-1

    CrossRef  CAS  PubMed  Google Scholar 

  46. Fernandes AAH, Novelli ELB, Okoshi K et al (2010) Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother 64:214–219. https://doi.org/10.1016/j.biopha.2009.08.007

    CrossRef  CAS  PubMed  Google Scholar 

  47. Hsu CY, Shih HY, Chia YC et al (2014) Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 58:1168–1176. https://doi.org/10.1002/mnfr.201300691

    CrossRef  CAS  PubMed  Google Scholar 

  48. Aitken JF, Loomes KM, Riba-Garcia I et al (2017) Rutin suppresses human-amylin/hIAPP misfolding and oligomer formation in-vitro, and ameliorates diabetes and its impacts in human-amylin/hIAPP transgenic mice. Biochem Biophys Res Commun 482:625–631. https://doi.org/10.1016/j.bbrc.2016.11.083

    CrossRef  CAS  PubMed  Google Scholar 

  49. Ghorbani A (2017) Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 96:305–312

    CrossRef  CAS  PubMed  Google Scholar 

  50. Zhou YX, Zhang H, Peng C (2014) Puerarin: a review of pharmacological effects. Phyther Res 28:961–975

    CrossRef  CAS  Google Scholar 

  51. Wong KH, Li GQ, Li KM et al (2011) Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J Ethnopharmacol 134:584–607

    CrossRef  PubMed  Google Scholar 

  52. Xu HN, He CH (2007) Separation and purification of puerarin with solvent extraction. Sep Purif Technol 56:397–400. https://doi.org/10.1016/j.seppur.2007.06.003

    CrossRef  CAS  Google Scholar 

  53. Wu K, Liang T, Duan X et al (2013) Anti-diabetic effects of puerarin, isolated from Pueraria lobata (Willd.), on streptozotocin-diabetogenic mice through promoting insulin expression and ameliorating metabolic function. Food Chem Toxicol 60:341–347. https://doi.org/10.1016/j.fct.2013.07.077

    CrossRef  CAS  PubMed  Google Scholar 

  54. Yang L, Yao D, Yang H et al (2016) Puerarin protects pancreatic β-cells in obese diabetic mice via activation of GLP-1R signaling. Mol Endocrinol 30:361–371. https://doi.org/10.1210/me.2015-1213

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hsu FL, Liu IM, Kuo DH et al (2003) Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J Nat Prod 66:788–792. https://doi.org/10.1021/np0203887

    CrossRef  CAS  PubMed  Google Scholar 

  56. Chen X, Qian L, Wang B et al (2019) Synergistic hypoglycemic effects of pumpkin polysaccharides and puerarin on type II diabetes mellitus mice. Molecules 24:955. https://doi.org/10.3390/molecules24050955

    CrossRef  CAS  PubMed Central  Google Scholar 

  57. Izawa K, Amino Y, Kohmura M et al (2010) Human-environment interactions - taste. In: Comprehensive natural products II: chemistry and biology. Elsevier Ltd, London, pp 631–671

    CrossRef  Google Scholar 

  58. Pothuraju R, Sharma RK, Chagalamarri J et al (2014) A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 94:834–840

    CrossRef  CAS  PubMed  Google Scholar 

  59. Liu HM, Kiuchi T (1992) Isolation and structure elucidation of Gymnemic acids, Antisweet principles of Gymnema sylvestre. Chem Pharm Bull (Tokyo) 40:1366–1375. https://doi.org/10.1248/cpb.40.1366

    CrossRef  CAS  Google Scholar 

  60. Li Y, Sun M, Liu Y et al (2019) Gymnemic acid alleviates type 2 diabetes mellitus and suppresses endoplasmic reticulum stress in vivo and in vitro. J Agric Food Chem 67:3662–3669. https://doi.org/10.1021/acs.jafc.9b00431

    CrossRef  CAS  PubMed  Google Scholar 

  61. Li Y, Liu Y, Liang J et al (2019) Gymnemic acid ameliorates Hyperglycemia through PI3K/AKT- and AMPK-mediated signaling pathways in type 2 diabetes mellitus rats. J Agric Food Chem 67:13051–13060. https://doi.org/10.1021/acs.jafc.9b04931

    CrossRef  CAS  PubMed  Google Scholar 

  62. Tiwari P, Ahmad K, Hassan Baig M (2016) Gymnema sylvestre for diabetes: from traditional herb to future’s therapeutic. Curr Pharm Des 23:1667–1676. https://doi.org/10.2174/1381612823666161108162048

    CrossRef  CAS  Google Scholar 

  63. Jorge K (2003) Soft drinks | chemical composition. In: Encycl food Sci Nutr, 2nd edn. Elsevier Ltd, London, pp 5346–5352. https://doi.org/10.1016/B0-12-227055-X/01101-9

    CrossRef  Google Scholar 

  64. Bassoli A, Merlini L (2003) Sweetners | intensive. In: Encyclopedia of food sciences and nutrition. Academic Press, Cambridge, pp 5688–5695

    CrossRef  Google Scholar 

  65. Lopez-Carbon V, Sayago A, Gonzalez-Domínguez R, Fernandez-Recamales A (2019) Simple and efficient green extraction of steviol glycosides from stevia rebaudiana leaves. Foods 8:402. https://doi.org/10.3390/foods8090402

    CrossRef  CAS  PubMed Central  Google Scholar 

  66. Bhasker S, Madhav H, Chinnamma M (2015) Molecular evidence of insulinomimetic property exhibited by steviol and stevioside in diabetes induced L6 and 3T3L1 cells. Phytomedicine 22:1037–1044. https://doi.org/10.1016/j.phymed.2015.07.007

    CrossRef  CAS  PubMed  Google Scholar 

  67. Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K (2000) Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 49:208–214. https://doi.org/10.1016/S0026-0495(00)91325-8

    CrossRef  CAS  PubMed  Google Scholar 

  68. Ilic V, Vukmirovic S, Stilinovic N et al (2017) Insight into anti-diabetic effect of low dose of stevioside. Biomed Pharmacother 90:216–221. https://doi.org/10.1016/j.biopha.2017.03.045

    CrossRef  CAS  PubMed  Google Scholar 

  69. Rotimi SO, Rotimi OA, Adelani IB et al (2018) Stevioside modulates oxidative damage in the liver and kidney of high fat/low streptozocin diabetic rats. Heliyon 4:e00640. https://doi.org/10.1016/j.heliyon.2018.e00640

    CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Zatula VV, Chernobrovaya NV, Kolesnikov DG (1966) A chemical study of the structure of securigenin and its bioside securidaside. Chem Nat Compd 2:359–360. https://doi.org/10.1007/BF00564226

    CrossRef  Google Scholar 

  71. Hosseinzadeh H, Ramezani M, Danaei AR (2002) Antihyperglycaemic effect and acute toxicity of Securigera securidaca L. seed extracts in mice. Phyther Res 16:745–747. https://doi.org/10.1002/ptr.1020

    CrossRef  CAS  Google Scholar 

  72. Hadjzadeh M-A-R, Moradi R, Ghorbani A et al (2015) Antihyperglycemic and antihyperlipidemic effects of hydroalcoholic extract of Securigera securidaca seeds in streptozotocin-induced diabetic rats. Adv Biomed Res 4:33. https://doi.org/10.4103/2277-9175.150427

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Tofighi Z, Moradi-Afrapoli F, Ebrahimi SN et al (2017) Securigenin glycosides as hypoglycemic principles of Securigera securidaca seeds. J Nat Med 71:272–280. https://doi.org/10.1007/s11418-016-1060-7

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Adki, K.M., Kulkarni, Y.A. (2021). Glycosides from Natural Sources in the Treatment of Diabetes Mellitus. In: Chen, H., Zhang, M. (eds) Structure and Health Effects of Natural Products on Diabetes Mellitus. Springer, Singapore. https://doi.org/10.1007/978-981-15-8791-7_5

Download citation