Skip to main content

The Role of Alkaloids in the Management of Diabetes Mellitus

  • Chapter
  • First Online:
Structure and Health Effects of Natural Products on Diabetes Mellitus

Abstract

Diabetes mellitus (DM) is a metabolic disorder with a rising prevalence globally. Currently about 400 million people are affected. In 2016, it was the seventh leading cause of death worldwide. Diabetes mellitus is prevalent in most countries. Its major feature is the high level of blood glucose which can be caused by insulin resistance or reduced insulin production. As the disease progresses, complications like diabetic neuropathy, nephropathy, and retinopathy occur. The use of herbs and natural products in the management of diabetes mellitus dates to the prehistoric era. Eighteen studies from about nine countries showed that between 18% and 72% use traditional and complementary medicine in the management of diabetes. In developing countries where the disease is highly prevalent natural products are very common because of ready availability, cheapness, and minimal side effects. This review highlights alkaloids, one of the most important secondary metabolites isolated from plants which have been studied to have anti-diabetes effects. Alkaloids are a group of highly diverse natural products that contain one or more basic nitrogen atoms in a heterocyclic ring. The various plants that contain them, their pharmacological actions studied thus far, mechanism of action will be extensively discussed. The aim of this review is to provide rich knowledge on research carried out thus far on plant alkaloids in the management of diabetes: their pharmacology, chemistry, and effectiveness which will serve as a platform for further research and development of novel drug molecules that can further help in the management of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aniszewski T (2015) Introduction. In: Alkaloids. Elsevier, Amsterdam, pp 1–20

    Google Scholar 

  2. Verpoorte R (2000) Alkaloids | liquid chromatography. In: Poole C, Cooke M (eds) Encyclopedia of separation science. Academic Press, Cambridge, MA, pp 1949–1956

    Chapter  Google Scholar 

  3. Fan W (2017) Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol 6:8–16

    Article  Google Scholar 

  4. Mendez CE, Umpierrez GE (2014) Pharmacotherapy for hyperglycemia in noncritically ill hospitalized patients. Diabetes Spectr 27:180–188. https://doi.org/10.2337/diaspect.27.3.180

    Article  PubMed  PubMed Central  Google Scholar 

  5. Asadi-Samani M, Kooti W, Farokhipour M et al (2016) The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician 8(1):1832–1842. https://doi.org/10.19082/1832

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fernando IPS, Ryu BM, Ahn G et al (2020) Therapeutic potential of algal natural products against metabolic syndrome: a review of recent developments. Trends Food Sci Technol 97:286–299

    Article  CAS  Google Scholar 

  7. Dowarah J, Singh VP (2020) Anti-diabetic drugs recent approaches and advancements. Bioorganic Med Chem 28:115263

    Article  CAS  Google Scholar 

  8. Debnath B, Singh S, Das M et al (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today 9:56–72. https://doi.org/10.1016/j.mtchem.2018.05.001

    Article  CAS  Google Scholar 

  9. Tiong SH, Looi CY, Hazni H et al (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 18:9770–9784. https://doi.org/10.3390/molecules18089770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ullah Jan N, Ali A, Ahmad B et al (2018) Evaluation of antidiabetic potential of steroidal alkaloid of Sarcococca saligna. Biomed Pharmacother 100:461–466. https://doi.org/10.1016/j.biopha.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  11. Sah SP, Sah ML, Juyal V, Pandey S (2010) Hypoglycemic activity of aqueous extract of Urtica parviflora roxb. in normoglycemic rats. Int J Phytomed 2:47–51

    Google Scholar 

  12. Uzor PF, Osadebe PO (2016) Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice. EXCLI J 15:290–296. https://doi.org/10.17179/excli2016-252

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li CJ, Chen PN, Li HJ et al (2020) Potential antidiabetic fumiquinazoline alkaloids from the marine-derived fungus scedosporium apiospermum F41-1. J Nat Prod 83(4):1082–1091. https://doi.org/10.1021/acs.jnatprod.9b01096

    Article  CAS  PubMed  Google Scholar 

  14. Tabussum A, Riaz N, Saleem M et al (2013) α-Glucosidase inhibitory constituents from Chrozophora plicata. Phytochem Lett 6:614–619. https://doi.org/10.1016/j.phytol.2013.08.005

    Article  CAS  Google Scholar 

  15. Yang H, Liu DQ, Liang TJ et al (2014) Racemosin C, a novel minor bisindole alkaloid with protein tyrosine phosphatase-1B inhibitory activity from the green alga Caulerpa racemosa. J Asian Nat Prod Res 16:1158–1165. https://doi.org/10.1080/10286020.2014.965162

    Article  CAS  PubMed  Google Scholar 

  16. Dong H, Wang N, Zhao L, Lu F (2012) Berberine in the treatment of type 2 Diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med 2012:591654. https://doi.org/10.1155/2012/591654

    Article  PubMed  PubMed Central  Google Scholar 

  17. Paul M, Hemshekhar M, Kemparaju K, Girish KS (2019) Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity. Free Radic Biol Med 130:196–205. https://doi.org/10.1016/j.freeradbiomed.2018.10.453

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Du X, Zhang Z, Zhou J (2018) Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur J Pharmacol 836:115–121. https://doi.org/10.1016/j.ejphar.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  19. Costantino L, Laura R, Renato P, Tiziana B, Pompeo P, Fabio G (2003) Isolation and pharmacological activities of the Tecoma stans alkaloids. Il Farmaco 9:781–785

    Article  Google Scholar 

  20. Luo J, Fort DM, Carlson TJ, Noamesi BK, Nii-Amon-Kotei D, King SR, Tsai J, Quan J, Hobensack C, Lapresca P, Waldeck N, Mendez CD, Jolad SD, Bierer DE, Reaven GM (1998) Cryptolepis sanguinolenta: an ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent. Diabet Med 15(5):367–374

    Article  CAS  Google Scholar 

  21. Nadkarni KM (1992) Dr. K. M. Nadkarni’s Indian materia medica, with Ayurvedic, Unani-Tibbi, Siddha, Allopathic, Homeopathic, Naturopathic & home remedies, appendices & indexes. In: Nadkarni KM (ed) The Indian plants and drugs. Indian materia medica, vol 2. Popular Prakashan, Bombay

    Google Scholar 

  22. Cooper EJ, Hudson AL, Parker CA, Morgan NG (2003) Effects of the beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur J Pharmacol 482:189–196

    Article  CAS  Google Scholar 

  23. Nandkarni AK (1992) Indian Materia Medica, vol 1. Popular Prakashan, Bombay

    Google Scholar 

  24. Ayyanar M, Subash-Babu P (2012) Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed 2(3):240–246. https://doi.org/10.1016/S2221-1691(12)60050-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shukla AK, Bigoniya P, Srivastava B (2012) Hypoglycemic activity of Lepidium sativum Linn seed total alkaloid on alloxan induced diabetic rats. Res J Med Plant 6(8):587–596

    Article  CAS  Google Scholar 

  26. Wiedemann M, Gurrola-Díaz CM, Vargas-Guerrero B, Wink M, García-López PM, Lupanine MD (2015) Improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules 20(10):19085–19100. https://doi.org/10.3390/molecules201019085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shibano M, Tsukamoto D, Masuda A, Tanaka Y, Kusano G (2001) Two new pyrrolidine alkaloids, radicamines A and B, as inhibitors of alpha-glucosidase from Lobelia chinensis Lour. Chem Pharm Bull 49(10):1362

    Article  CAS  Google Scholar 

  28. Tabopda TK, Ngoupayo J, Liu J, Mitaine-Offer AC, Tanoli SA, Khan SN, Ali MS, Ngadjui BT, Tsamo E, Lacaille-Dubois MA, Luu B (2008) Bioactive aristolactams from Piper umbellatum. Phytochemistry 69(8):1726–1731

    Article  CAS  Google Scholar 

  29. Gao H, Huang YN, Gao B, Li P, Inagaki C, Kawabata J (2008) Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem 108(3):965–972

    Article  CAS  Google Scholar 

  30. Brahmachari G (2012) Bioactive natural products: opportunities and challenges in medicinal chemistry. World Scientific Publishing, Singapore

    Google Scholar 

  31. Oku T, Yamada M, Nakamura M, Sadamori N, Nakamura S (2006) Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br J Nutr 95:933–938

    Article  CAS  Google Scholar 

  32. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, kato A, Nash R-J, Lee HS, Ryu KS (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49:4208–4213

    Article  CAS  Google Scholar 

  33. Patel MB, Mishra S (2011) Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine 18(12):1045–1052

    Article  CAS  Google Scholar 

  34. Shimoda H, Nishida N, Ninomiya K, Matsuda H, Yoshikawa M (2001) Javaberine A, new TNF-alpha and nitric oxide production inhibitor, from the roots of Talinum paniculatum. Heterocycles 55(11):2043–2050

    Article  CAS  Google Scholar 

  35. Catthareeya T, Papirom P, Chanlun S, Kupittayanant S (2013) Talinum paniculatum (jacq.) GERTN: a medicinal plant with potential estrogenic activity in ovariectomized rats. Int J Pharm Pharm Sci 5(2):478–485

    Google Scholar 

  36. Lee H-S (2002) Rat lens aldose reductase inhibitory activities of Coptis japonica root-derived isoquinoline alkaloids. J Agric Food Chem 50:7013–7016

    Article  CAS  Google Scholar 

  37. Takada K, Uehara T, Nakao Y, Matsunaga S, van Soest WM, Fusetani N (2004) Schulzeines A-C, new alpha-glucosidase inhibitors from the marine sponge Penares schulzei. J Am Chem Soc 126:187–193

    Article  CAS  Google Scholar 

Download references

Conflicts of Interest

No conflicts of interest among the authors.

Funding

This study receives no funding or grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinmisola Aloko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aloko, S., Bello, M.O. (2021). The Role of Alkaloids in the Management of Diabetes Mellitus. In: Chen, H., Zhang, M. (eds) Structure and Health Effects of Natural Products on Diabetes Mellitus. Springer, Singapore. https://doi.org/10.1007/978-981-15-8791-7_15

Download citation

Publish with us

Policies and ethics