Skip to main content

Optogenetic Approaches to Understand the Neural Circuit Mechanism of Social Deficits Seen in Autism Spectrum Disorders

  • Chapter
  • First Online:
Book cover Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

Individuals with neurodevelopmental disorders, such as autism spectrum disorders (ASDs), are diagnosed based on nonquantitative objective parameters such as behavioral phenotypes. It is still unclear how any neural mechanism affects such behavioral phenotypes in these patients. In human genetics, a large number of genetic abnormalities including single nucleotide variation (SNV) and copy number variation (CNV) have been found in individuals with ASDs. It is thought that influence of such variations converges on dysfunction of neural circuit resulting in common behavioral phenotypes of ASDs such as deficits in social communication and interaction. Recent studies suggest that an excitatory/inhibitory (E/I) imbalanced state, which induces disruption of neural circuit activities, is one of the pathophysiological abnormalities in ASD brains. To assess the causal relationship between brain abnormalities and behavioral deficits, we can take advantage of optogenetics with animal models of ASDs that recapitulate human genetic mutations. Here, we review optogenetics studies being utilized to dissect neural circuit mechanisms associated with social deficits in model mice of ASD. Optogenetic manipulation of disrupted neural activities would help us understand how neural circuits affect behavioral deficits observed in ASDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine (serotonin)

ACC:

Anterior cingulate cortex

ASD:

Autism spectrum disorder

CMS:

Chronic mild stress

CNV:

Copy number variation

DBS:

Deep brain stimulation

DRN:

Dorsal raphe nucleus

E/I:

Excitatory/inhibitory

EEG:

Electroencephalography

GABA:

γ-Aminobutyric acid

GAD:

Glutamic acid decarboxylase

KI:

Knockin

KO:

Knockout

LFP:

Long-term potentiation

MEG:

Magnetoencephalography

mPFC:

Medial prefrontal cortex

NAc:

Nucleus accumbens

NMDAR:

N-methyl-d-aspartate receptor

NS:

Narrow-spiking

PL:

Prelimbic area

PV:

Parvalbumin

SDS:

Social defeat stress

SNV:

Single-nucleotide variation

SSFO:

Stable step-function opsin

VTA:

Ventral tegmental area

WS:

Wide-spiking

References

  • Amir N, Klumpp H, Elias J, Bedwell JS, Yanasak N, Miller LS (2005) Increased activation of the anterior cingulate cortex during processing of disgust faces in individuals with social phobia. Biol Psychiatry 57:975–981

    Article  PubMed  Google Scholar 

  • Apps MAJ, Rushworth MFS, Chang SWC (2016) The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 90:692–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell J, Tabuchi K, Bolliger MF, Blaiss CA, Brose N, Liu X, Südhof TC, Powell CM (2009) Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav 8:114–126

    Article  CAS  PubMed  Google Scholar 

  • Brumback AC, Ellwood IT, Kjaerby C, Iafrati J, Robinson S, Lee AT, Patel T, Nagaraj S, Davatolhagh F, Sohal VS (2018) Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol Psychiatry 23:2078–2089

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G, Wang X-J (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao W, Lin S, Xia Q-Q, Du Y-L, Yang Q, Zhang M-Y, Lu Y-Q, Xu J, Duan S-M, Xia J et al (2018) Gamma oscillation dysfunction in mPFC leads to social deficits in Neuroligin 3 R451C Knockin mice. Neuron 97:1253–1260.e7

    Article  CAS  PubMed  Google Scholar 

  • Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L-H, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, Rühlmann C, Jones SR, Deisseroth K, Sheng M et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17:537–548

    Article  PubMed  CAS  Google Scholar 

  • Challis C, Beck SG, Berton O (2014) Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav Neurosci 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao H-T, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu H-C, Heintz N et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai H-C, Pomeranz L, Christoffel DJ et al (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang Y, Li X, Zhao X, Ye Q, Lin Y, Tao HW, Rasch MJ, Zhang X (2017) Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron 96:1403–1418.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covington HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, LaPlant Q, Mouzon E, Ghose S, Tamminga CA et al (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30:16,082–16,090

    Article  CAS  Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, Mowry BJ, Thapar A, Goddard ME et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45:984–994

    Article  PubMed Central  CAS  Google Scholar 

  • Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 102:12560–12565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etherton M, Földy C, Sharma M, Tabuchi K, Liu X, Shamloo M, Malenka RC, Südhof TC (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci U S A 108:13,764–13,769

    Article  CAS  Google Scholar 

  • Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52:805–810

    Article  CAS  PubMed  Google Scholar 

  • Frohlich J, Van Horn JD (2014) Reviewing the ketamine model for schizophrenia. J Psychopharmacol 28:287–302

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15:146–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson JR, Bartley AF, Hays SA, Huber KM (2008) Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol 100:2615–2626

    Article  PubMed  PubMed Central  Google Scholar 

  • Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB, Vasuta C, Yee S, Truitt M, Dallaire P et al (2013) Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gogolla N, Leblanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK (2009) Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord 1:172–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ, Airan RD, Zalocusky KA et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, Yao H, Yang J, Liu H, Liu Y et al (2019) Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci 22:1223–1234

    Article  CAS  PubMed  Google Scholar 

  • Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, Rubenstein JL, Scheuer T, de la Iglesia HO, Catterall WA (2012) Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines RM, Wu L, Hines DJ, Steenland H, Mansour S, Dahlhaus R, Singaraja RR, Cao X, Sammler E, Hormuzdi SG et al (2008) Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci 28:6055–6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11,496–11,500

    Article  CAS  Google Scholar 

  • Klumpp H, Fitzgerald JM, Kinney KL, Kennedy AE, Shankman SA, Langenecker SA, Phan KL (2017) Predicting cognitive behavioral therapy response in social anxiety disorder with anterior cingulate cortex and amygdala during emotion regulation. NeuroImage Clin 15:25–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC et al (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  CAS  PubMed  Google Scholar 

  • Lazaro MT, Taxidis J, Shuman T, Bachmutsky I, Ikrar T, Santos R, Marcello GM, Mylavarapu A, Chandra S, Foreman A et al (2019) Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Rep 27:2567–2578.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Takumi T (2014) Genomic and genetic aspects of autism spectrum disorder. Biochem Biophys Res Commun 452:244–253

    Article  CAS  PubMed  Google Scholar 

  • Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64:461–467

    Article  PubMed  Google Scholar 

  • Malhotra D, Sebat J (2012) CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148:1223–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CR, Scherer SW (2012) Detection and characterization of copy number variation in autism spectrum disorder. Methods Mol Biol 838:115–135

    Article  CAS  PubMed  Google Scholar 

  • Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, Parker NF, Bhave V, Hur H, Liang Y et al (2017) Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171:1663–1677.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai N, Nagano M, Saitow F, Watanabe Y, Kawamura Y, Kawamoto A, Tamada K, Mizuma H, Onoe H, Watanabe Y et al (2017) Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice. Sci Adv 3:e1603001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakanishi M, Nomura J, Ji X, Tamada K, Arai T, Takahashi E, Bućan M, Takumi T (2017) Functional significance of rare neuroligin 1 variants found in autism. PLoS Genet 13:e1006940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R et al (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:1235–1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A et al (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P, Peles E (1999) Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 24:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Salomon D, Elhanany H, Sabanay H, Kiernan B, Pevny L, Stewart CL, Xu X, Chiu S-Y, Shrager P et al (2003) Juxtaparanodal clustering of shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 162:1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11:198–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K et al (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63:628–642

    Article  CAS  PubMed  Google Scholar 

  • Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, Fowler SC, Malenka RC, Südhof TC (2014) Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158:198–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625

    Article  CAS  PubMed  Google Scholar 

  • Schaaf CP, Zoghbi HY (2011) Solving the autism puzzle a few pieces at a time. Neuron 70:806–808

    Article  CAS  PubMed  Google Scholar 

  • Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen A-L, Udvardi PT, Shiban E, Spilker C et al (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486:256–260

    Article  CAS  PubMed  Google Scholar 

  • Seillier A, Giuffrida A (2009) Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 204:410–415

    Article  CAS  PubMed  Google Scholar 

  • Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong ASO, Kauvar I, Ramakrishnan C, Fenno LE, Davidson TJ, Wright M et al (2017) Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci Transl Med 9:eaah6733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao J, Wang M, Yu G, Zhu S, Yu Y, Heng BC, Wu J, Ye H (2018) Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A 115:E6722–E6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118:673–684

    Article  PubMed  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed HE, Masiulis I, Gibson JR, Powell CM (2015) Increased cortical inhibition in autism-linked Neuroligin-3R451C mice is due in part to loss of endocannabinoid signaling. PLoS One 10:e0140638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takumi T, Tamada K (2018) CNV biology in neurodevelopmental disorders. Curr Opin Neurobiol 48:183–192

    Article  CAS  PubMed  Google Scholar 

  • Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai H-C, Finkelstein J, Kim S-Y, Adhikari A, Thompson KR, Andalman AS et al (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    Article  CAS  PubMed  Google Scholar 

  • Wallace ML, Burette AC, Weinberg RJ, Philpot BD (2012) Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 74:793–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh JJ, Christoffel DJ, Heifets BD, Ben-Dor GA, Selimbeyoglu A, Hung LW, Deisseroth K, Malenka RC (2018) 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature 560:589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Carlén M (2012) Optogenetic dissection of cortical information processing-shining light on schizophrenia. Brain Res 1476:31–37

    Article  CAS  PubMed  Google Scholar 

  • Won H, Lee H-R, Gee HY, Mah W, Kim J-I, Lee J, Ha S, Chung C, Jung ES, Cho YS et al (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486:261–265

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Suzuki Y, Nagasaki SC, Okuno H, Imayoshi I (2018) Light control of the Tet gene expression system in mammalian cells. Cell Rep 25:487–500.e6

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM, Abrams DN, Kalikhman D, Simon H, Woldeyohannes L et al (2012) Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 32:6525–6541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Shi L, Cui X, Wang S, Luo X (2016) Functional connectivity of the caudal anterior cingulate cortex is decreased in autism. PLoS One 11:e0151879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by KAKENHI (16H06316, 16H06463, 19K16886), Japan Society of Promotion of Science and Ministry of Education, Culture, Sports, Science, and Technology, Intramural Research Grant for Neurological and Psychiatric Disorders of NCNP, the Takeda Science Foundation, and the Smoking Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Takumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakai, N., Overton, E.T.N., Takumi, T. (2021). Optogenetic Approaches to Understand the Neural Circuit Mechanism of Social Deficits Seen in Autism Spectrum Disorders. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_36

Download citation

Publish with us

Policies and ethics