Skip to main content
Book cover

Optogenetics pp 513–521Cite as

Current Topics of Optogenetics for Medical Applications Toward Therapy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

The optogenetics approach uses a combination of genetic and optical methods to initiate and control functions in specific cells of biological tissues. Since the high-speed control of neuronal activity by irradiating channelrhodopsin-2 with blue light was reported in 2005, tremendous advancement and application of optogenetics in the field of neuroscience, such as in studies that associate neuronal activity with behaviors, have been initiated. Optogenetics is not only used as a research tool, but is also started to apply in the diagnosis of a disease or as therapy in various studies. Here, I summarize current reports on therapy using a typical photopigment used in optogenetics, channelrhodopsin-2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ChR:

Channelrhodopsin

ChR2:

Channelrhodopsin-2

References

  • Airan RD, Thompson KR, Fenno LE et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Bingen BO, Engels MC, Schalij MJ et al (2014) Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc Res 104:194–205

    Article  CAS  PubMed  Google Scholar 

  • Biselli T, Lange SS, Sablottny L et al (2019) Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: a systematic review. Eur J Neurosci. https://doi.org/10.1111/ejn.14603

  • Bostanciklioglu M (2020) Optogenetic stimulation of serotonin nuclei retrieve the lost memory in Alzheimer’s disease. J Cell Physiol 235:836–847

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Bryson JB, Machado CB, Crossley M et al (2014) Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science 344:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang X, Du Z et al (2013) Spatiotemporal control of gene expression in mammalian cells and in mice using the LightOn system. Curr Protoc Chem Biol 5:111–129

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xiong M, Zhang SC (2015) Illuminating Parkinson’s therapy with optogenetics. Nat Biotechnol 33:149–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng MY, Wang EH, Woodson WJ et al (2014) Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A 111:12913–12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski T, Rankovic V, Moser T (2019) Toward the optical Cochlear implant. Cold Spring Harb Perspect Med 9:a033225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte MJ, Kanumuri VV, Landegger LD et al (2018) Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants. Mol Ther 26:1931–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwenger M, Kowalski WJ, Ye F et al (2019) Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J Tissue Eng 10:2041731419841748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etter G, van der Veldt S, Manseau F et al (2019) Optogenetic gamma stimulation rescues memory impairments in an Alzheimer’s disease mouse model. Nat Commun 10:5322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fehrentz T, Schonberger M, Trauner D (2011) Optochemical genetics. Angew Chem Int Ed Engl 50:12156–12182

    Article  CAS  PubMed  Google Scholar 

  • Garita-Hernandez M, Lampic M, Chaffiol A et al (2019) Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun 10:4524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gourine AV, Kasymov V, Marina N et al (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu W, Li Q, Li B et al (2020) Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 227:119,546

    Article  CAS  Google Scholar 

  • Isago H, Sugano E, Wang Z et al (2012) Age-dependent differences in recovered visual responses in Royal College of surgeons rats transduced with the Channelrhodopsin-2 gene. J Mol Neurosci 46:393–400

    Article  CAS  PubMed  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A et al (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo-Serra M, Trauner D, Llobet A et al (2013) Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR. Front Mol Neurosci 6:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janovjak H, Szobota S, Wyart C et al (2010) A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 13:1027–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauwe G, Isacoff EY (2013) Rapid feedback regulation of synaptic efficacy during high-frequency activity at the Drosophila larval neuromuscular junction. Proc Natl Acad Sci U S A 110:9142–9147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TI, McCall JG, Jung YH et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Brigham MD, Trevino A et al (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16:816–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushibiki T, Okawa S, Hirasawa T et al (2015) Optogenetic control of insulin secretion by pancreatic beta-cells in vitro and in vivo. Gene Ther 22:553–559

    Article  CAS  PubMed  Google Scholar 

  • Lagali PS, Balya D, Awatramani GB et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ramirez S, Pang PT et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looser J, Schroder-Lang S, Hegemann P et al (2009) Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACalpha). Biol Chem 390:1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Du Z, Chen X et al (2013) Fine tuning the LightOn light-switchable transgene expression system. Biochem Biophys Res Commun 440:419–423

    Article  CAS  PubMed  Google Scholar 

  • McCall JG, Kim TI, Shin G et al (2013) Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 8:2413–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miesenbock G (2009) The optogenetic catechism. Science 326:395–399

    Article  PubMed  CAS  Google Scholar 

  • Miesenbock G (2011) Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27:731–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  • Nussinovitch U, Gepstein L (2015) Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat Biotechnol 33:750–754

    Article  CAS  PubMed  Google Scholar 

  • Osawa S, Iwasaki M, Hosaka R et al (2013) Optogenetically induced seizure and the longitudinal hippocampal network dynamics. PLoS One 8:e60928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastrana E (2010) Optogenetics: controlling cell function with light. Nat Methods 8:24–25

    Article  CAS  Google Scholar 

  • Plaiasu V (2011) Update in genetics. Maedica (Buchar) 6:70

    Google Scholar 

  • Ramirez S, Liu X, MacDonald CJ et al (2015) Activating positive memory engrams suppresses depression-like behaviour. Nature 522:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasse P, Funken M, Beiert T et al (2019) Optogenetic termination of cardiac arrhythmia: mechanistic enlightenment and therapeutic application? Front Physiol 10:675

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroder-Lang S, Schwarzel M, Seifert R et al (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4:39–42

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroh A, Tsai HC, Wang LP et al (2011) Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S et al (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  • Szobota S, Gorostiza P, Del Bene F et al (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Ohashi Y, Tsubota T et al (2012) A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. J Neurosci Methods 211:49–57

    Article  CAS  PubMed  Google Scholar 

  • Tomita H, Sugano E, Isago H et al (2010) Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 90:429–436

    Article  CAS  PubMed  Google Scholar 

  • Tye KM, Prakash R, Kim SY et al (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volgraf M, Gorostiza P, Numano R et al (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2:47–52

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269

    Article  CAS  PubMed  Google Scholar 

  • Wu YI, Frey D, Lungu OI et al (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyart C, Del Bene F, Warp E et al (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461:407–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Yang Q, Song D et al (2020) Optogenetic manipulation of astrocytes from synapses to neuronal networks: a potential therapeutic strategy for neurodegenerative diseases. Glia 68:215–226

    Article  PubMed  Google Scholar 

  • Yoshikawa S, Suzuki T, Watanabe M et al (2005) Kinetic analysis of the activation of photoactivated adenylyl cyclase (PAC), a blue-light receptor for photomovements of Euglena. Photochem Photobiol Sci 4:727–731

    Article  CAS  PubMed  Google Scholar 

  • Zgierski-Johnston CM, Ayub S, Fernandez MC et al (2019) Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2019.11.004

  • Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Kushibiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushibiki, T. (2021). Current Topics of Optogenetics for Medical Applications Toward Therapy. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_35

Download citation

Publish with us

Policies and ethics