Skip to main content
Book cover

Optogenetics pp 225–234Cite as

Visualization and Manipulation of Intracellular Signaling

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

Cells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein–protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels. Much effort has been devoted to developing genetically encoded fluorescent biosensors based on fluorescent proteins, which enable us to visualize the spatiotemporal dynamics of cell signaling. In addition, optogenetic techniques for controlling intracellular signal transduction systems have been developed and applied in recent years by regulating intracellular signaling in a light-dependent manner. Here, we outline the principles of biosensors for probing intracellular signaling and the optogenetic tools for manipulating them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

bNLS:

Bipartite nuclear localization sequence

BVRA:

Biliverdin reductase A

cpFP:

Circularly permutated FP

CRY2:

Cryptochrome 2

EGF:

Epidermal growth factor

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

FP:

Fluorescent protein

FRET:

Förster (or fluorescence) resonance energy transfer

iRFP:

Infra-red FP

KTR:

Kinase translocation reporter

LOV:

Light-oxygen-voltage sensing

NES:

Nuclear export signal

PCB:

Phycocyanobilin

PhyB:

Phytochrome B

PΦB:

Phytochromobilin

References

  • Albeck JG et al (2013) Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol Cell 49:249–261

    CAS  PubMed  Google Scholar 

  • Aoki K, Matsuda M (2009) Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nat Protoc 4:1623–1631

    CAS  PubMed  Google Scholar 

  • Aoki K et al (2012) Stable expression of FRET biosensors: a new light in cancer research. Cancer Sci 103:614–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki K et al (2013) Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol Cell 52:529–540

    CAS  PubMed  Google Scholar 

  • Aoki K et al (2017) Propagating wave of ERK activation orients collective cell migration. Dev Cell 43:305–317.e5

    CAS  PubMed  Google Scholar 

  • Boyden ES et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    CAS  PubMed  Google Scholar 

  • Chan Y-B et al (2015) Optogenetic control of gene expression in Drosophila. PLoS One 10:e0138181

    PubMed  PubMed Central  Google Scholar 

  • Duan L et al (2017) Understanding CRY2 interactions for optical control of intracellular signaling. Nat Commun 8:547

    PubMed  PubMed Central  Google Scholar 

  • Fujioka A et al (2006) Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J Biol Chem 281:8917–8926

    CAS  PubMed  Google Scholar 

  • Gil AA et al (2020) Optogenetic control of protein binding using light-switchable nanobodies. Nat Commun 11:4044

    Google Scholar 

  • Goglia AG, Toettcher JE (2019) A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr Opin Chem Biol 48:106–113

    CAS  PubMed  Google Scholar 

  • Greenwald EC et al (2018) Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of Signaling networks. Chem Rev 118:11707–11794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guntas G et al (2015) Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc Natl Acad Sci U S A 112:112–117

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hiratsuka T et al (2015) Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. elife 4:e05178. https://doi.org/10.7554/eLife.05178

    Article  PubMed  PubMed Central  Google Scholar 

  • Idevall-Hagren O et al (2012) Optogenetic control of phosphoinositide metabolism. Proc Natl Acad Sci U S A 109:E2316–E2323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    CAS  PubMed  Google Scholar 

  • Kakumoto T, Nakata T (2013) Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis. PLoS One 8:e70861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamioka Y et al (2012) Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors. Cell Struct Funct 37:65–73

    CAS  PubMed  Google Scholar 

  • Katsura Y et al (2015) An optogenetic system for interrogating the temporal dynamics of Akt. Sci Rep 5:14589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MJ et al (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinjo T et al (2019) FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics. Nat Methods 16:1029–1036

    CAS  PubMed  Google Scholar 

  • Kiyokawa E et al (2011) Spatiotemporal regulation of small GTPases as revealed by probes based on the principle of Förster resonance energy transfer (FRET): implications for signaling and pharmacology. Annu Rev Pharmacol Toxicol 51:337–358

    CAS  PubMed  Google Scholar 

  • Kolar K et al (2018) OptoBase: a web platform for molecular optogenetics. ACS Synth Biol 7:1825–1828

    CAS  PubMed  Google Scholar 

  • Komatsu N et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsubara AT et al (2015) Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer. Sci Rep 5:13283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S et al (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kostyuk AI et al (2019) Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int J Mol Sci 20(17):4200. https://doi.org/10.3390/ijms20174200

    Article  CAS  PubMed Central  Google Scholar 

  • Kyriakakis P et al (2018) Biosynthesis of orthogonal molecules using ferredoxin and ferredoxin-NADP+ reductase systems enables genetically encoded PhyB optogenetics. ACS Synth Biol 7:706–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16:277–278

    CAS  PubMed  Google Scholar 

  • Levskaya A et al (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461:997–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maryu G et al (2016) Multiplexed fluorescence imaging of ERK and Akt activities and cell-cycle progression. Cell Struct Funct 41:81–92

    CAS  PubMed  Google Scholar 

  • Mehta S et al (2018) Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat Cell Biol 20(10):1215–1225. https://doi.org/10.1038/s41556-018-0200-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura H et al (2018) Cell-to-cell heterogeneity in p38-mediated cross-inhibition of JNK causes stochastic cell death. Cell Rep 24:2658–2668

    CAS  PubMed  Google Scholar 

  • Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295–305

    CAS  PubMed  Google Scholar 

  • Miyawaki A (2011) Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu Rev Biochem 80:357–373

    CAS  PubMed  Google Scholar 

  • Mukougawa K et al (2006) Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli. FEBS Lett 580:1333–1338

    CAS  PubMed  Google Scholar 

  • Oda K et al (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:E1–E17

    Google Scholar 

  • Oda S et al (2018) Chapter 7: Optogenetic tools for quantitative biology: the genetically encoded PhyB–PIF light-inducible dimerization system and its application for controlling signal transduction. In: Optogenetics, pp 137–148

    Google Scholar 

  • Oliinyk OS et al (2019) Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nat Commun 10:279

    PubMed  PubMed Central  Google Scholar 

  • Purvis JE, Lahav G (2013) Encoding and decoding cellular information through signaling dynamics. Cell 152:945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purvis JE et al (2012) p53 dynamics control cell fate. Science 336:1440–1444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regot S et al (2014) High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:1724–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocks O et al (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752

    CAS  PubMed  Google Scholar 

  • Rockwell NC, Lagarias JC (2010) A brief history of phytochromes. ChemPhysChem 11:1172–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf TM et al (2018) Red-shifted FRET biosensors for high-throughput fluorescence lifetime screening. Biosensors 8:99. https://doi.org/10.3390/bios8040099

    Article  CAS  PubMed Central  Google Scholar 

  • Shimizu-Sato S et al (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044

    CAS  PubMed  Google Scholar 

  • Spiltoir JI, Tucker CL (2019) Photodimerization systems for regulating protein-protein interactions with light. Curr Opin Struct Biol 57:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toettcher JE et al (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8:837–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uda Y et al (2017) Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proc Natl Acad Sci U S A 114:11962–11967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YI et al (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D et al (2019) Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. Nat Methods 16(11):1095–1100. https://doi.org/10.1038/s41592-019-0592-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Aoki Laboratories for helpful discussions and assistance. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grants (no.19K16050) (to Y.G.); JSPS KAKENHI Grants (no. 19K16207 and no. 19H05675) (to Y.K.); Core Research for Evolutional Science and Technology | Japan Society for the Promotion of Science (JPMJCR1654), JSPS KAKENHI Grants (no. 16KT0069, 16H01425 “Resonance Bio,” 18H04754 “Resonance Bio,” 18H02444, and 19H05798), and ONO Medical Research Foundation (to K.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goto, Y., Kondo, Y., Aoki, K. (2021). Visualization and Manipulation of Intracellular Signaling. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_13

Download citation

Publish with us

Policies and ethics