Abstract
The lateral flow assay (LFA), which is a simple paper-based device for the detection and analysis of disease, is now the most predominant diagnostic platform in point-of-care (POC) markets [1,2,3,4]. This market-dominating power stems from the unique characteristics of the LFA: low cost, portability, versatility, easy use, free of other instruments, and results within 10–20 min [5,6,7]. In addition, the LFA is compatible with various biological samples such as whole blood, plasma, serum, urine, sweat, and saliva and can be used for the detection of bacteria, viruses, protozoa, nucleic acids, proteins, toxins, and heavy metals [2, 7, 8]. Therefore, the LFA is an ideal POC platform. The concept of the LFA technique was first introduced by Plotz and Singer in 1956, using the latex agglutination test to diagnose rheumatoid arthritis [1]. The most common form of the LFA at present is a gold nanoparticle (AuNP)-based colorimetric LFA, first presented by Leuvering et al. in 1980, called the “sol particle immunoassay” (SPIA) [1, 2, 4]. The first LFA product to be commercialized was ClearbluTM launched by Unipath Ltd. in 1988; it was developed for individuals to diagnose pregnancy at home. Because the level of human chorionic gonadotropin (hCG) hormones rapidly increase in the urine of a pregnant woman, this LFA can detect such an increase, which appears as two blue lines [1, 4].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rivas, L., de la Escosura-Muñiz, A., Pons, J., Merkoçi, A.: Lateral flow biosensors based on gold nanoparticles. Compr. Anal. Chem. 66, 569–605 (2014). https://doi.org/10.1016/B978-0-444-63285-2.00014-6
Banerjee, R., Jaiswal, A.: Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 143, 1970–1996 (2018). https://doi.org/10.1039/c8an00307f
O’Farrell, B.: Lateral flow immunoassay systems: evolution from the current state of the art to the next generation of highly sensitive, quantitative rapid assays. In: Wild, D. (ed.) The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques, 4th edn, pp. 89–107. Elsevier, Oxford, UK (2013)
van Amerongen, A., et al.: Lateral flow immunoassays. In: Vashist, S., Luong, J. (eds.) Handbook of Immunoassay Technologies, pp. 157–182. Academic Press, Cambridge, MA (2018)
Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013). https://doi.org/10.1039/C3LC50169H
Juntunen, E.: Lateral Flow Immunoassays with Fluorescent Reporter Technologies. University of Turku, Turku, Finland (2018)
Posthuma-Trumpie, G.A., Korf, J., van Amerongen, A.: Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393, 569–582 (2009). https://doi.org/10.1007/s00216-008-2287-2
Sajid, M., Kawde, A.-N., Daud, M.: Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 19, 689–705 (2015). https://doi.org/10.1016/j.jscs.2014.09.001
Lateral Flow Assay Market. Available at: https://www.marketsandmarkets.com/Market-Reports/lateral-flow-assay-market-167205133.html. Accessed: 17 Dec 2019
Lateral Flow Assay Market Size to surpass 6.6%+ CAGR up to 2024. Available at: https://www.marketwatch.com/press-release/lateral-flow-assay-market-size-to-surpass-66-cagr-up-to-2024-2019-06-03. Accessed: 17 Dec 2019
Butler, S.A., Khanlian, S.A., Cole, L.A.: Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin. Chem. 47, 2131–2136 (2001)
Fernández-Sánchez, C., et al.: One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J. Immunol. Methods 307, 1–12 (2005). https://doi.org/10.1016/j.jim.2005.08.014
Xu, H., et al.: Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal. Chem. 81, 669–675 (2008). https://doi.org/10.1021/ac8020592
Choi, D.H., et al.: A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 25, 1999–2002 (2010). https://doi.org/10.1016/j.bios.2010.01.019
Parolo, C., de la Escosura-Muñiz, A., Merkoçi, A.: Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens. Bioelectron. 40, 412–416 (2013). https://doi.org/10.1016/j.bios.2012.06.049
Wang, J.-Y., et al.: Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157:H7 in milk. RSC Adv. 5, 62300–62305 (2015). https://doi.org/10.1039/C5RA13279G
Seo, K.-H., Holt, P.S., Stone, H.D., Gast, R.K.: Simple and rapid methods for detecting Salmonella enteritidis in raw eggs. Int. J. Food Microbiol. 87, 139–144 (2003). https://doi.org/10.1016/S0168-1605(03)00053-9
Huang, S.-H.: Gold nanoparticle-based immunochromatographic assay for the detection of Staphylococcus aureus. Sens. Actuators B Chem. 127, 335–340 (2007). https://doi.org/10.1016/j.snb.2007.04.027
Wang, D.-B., et al.: Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosens. Bioelectron. 42, 661–667 (2013). https://doi.org/10.1016/j.bios.2012.10.088
Liu, H., et al.: Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosens. Bioelectron. 62, 38–46 (2014). https://doi.org/10.1016/j.bios.2014.06.020
Le, T.T., et al.: Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Anal. Chem. 89, 6781–6786 (2017). https://doi.org/10.1021/acs.analchem.7b01149
Workman, S., et al.: Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J. Virol. Methods 160, 14–21 (2009). https://doi.org/10.1016/j.jviromet.2009.04.003
Brangel, P., et al.: A serological point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors. ACS Nano 12, 63–73 (2018). https://doi.org/10.1021/acsnano.7b07021
Hagström, A.E.V., et al.: Sensitive detection of norovirus using phage nanoparticle reporters in lateral-flow assay. PLoS ONE 10, e0126571 (2015). https://doi.org/10.1371/journal.pone.0126571
Lee, D., et al.: Simple and highly sensitive molecular diagnosis of Zika virus by lateral flow assays. Anal. Chem. 88, 12272–12278 (2016). https://doi.org/10.1021/acs.analchem.6b03460
Nash, M.A., Waitumbi, J.N., Hoffman, A.S., Yager, P., Stayton, P.S.: Multiplexed enrichment and detection of malarial biomarkers using a stimuli-responsive iron oxide and gold nanoparticle reagent system. ACS Nano 6, 6776–6785 (2012). https://doi.org/10.1021/nn3015008
Rivas, L., et al.: Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res. 8, 3704–3714 (2015). https://doi.org/10.1007/s12274-015-0870-3
van Dam, G.J., et al.: A robust dry reagent lateral flow assay for diagnosis of active schistosomiasis by detection of Schistosoma circulating anodic antigen. Exp. Parasitol. 135, 274–282 (2013). https://doi.org/10.1016/j.exppara.2013.06.017
Mazumdar, D., Liu, J., Lu, G., Zhou, J., Lu, Y.: Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates. Chem. Commun. 46, 1416–1418 (2010). https://doi.org/10.1039/B917772H
He, Y., et al.: Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens. Bioelectron. 26, 4464–4470 (2011). https://doi.org/10.1016/j.bios.2011.05.003
López Marzo, A.M., Pons, J., Blake, D.A., Merkoçi, A.: High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters. Biosens. Bioelectron. 47, 190–198 (2013). https://doi.org/10.1016/j.bios.2013.02.031
Gandhi, S., Caplash, N., Sharma, P., Raman Suri, C.: Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples. Biosens. Bioelectron. 25, 502–505 (2009). https://doi.org/10.1016/j.bios.2009.07.018
Byzova, N.A., Zvereva, E.A., Zherdev, A.V., Eremin, S.A., Dzantiev, B.B.: Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta 81, 843–848 (2010). https://doi.org/10.1016/j.talanta.2010.01.02
Byzova, N.A., et al.: Rapid immunochromatographic assay for ofloxacin in animal original foodstuffs using native antisera labeled by colloidal gold. Talanta 119, 125–132 (2014). https://doi.org/10.1016/j.talanta.2013.10.054
Lutz, B., et al.: Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13, 2840–2847 (2013). https://doi.org/10.1039/c3lc50178g
Toley, B.J., et al.: Tunable-delay shunts for paper microfluidic devices. Anal. Chem. 85, 11545–11552 (2013). https://doi.org/10.1021/ac4030939
Toley, B.J., et al.: A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15, 1432–1444 (2015). https://doi.org/10.1039/c4lc01155d
Shin, J.H., Park, J., Kim, S.H., Park, J.-K.: Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014). https://doi.org/10.1063/1.4899773
Rivas, L., Medina-Sánchez, M., de la Escosura-Muñiz, A., Merkoçi, A.: Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip 14, 4406–4414 (2014). https://doi.org/10.1039/c4lc00972j
Choi, J.R., et al.: Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing. Anal. Chem. 88, 6254–6264 (2016). https://doi.org/10.1021/acs.analchem.6b00195
Quesada-González, D., Merkoçi, A.: Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 73, 47–63 (2015). https://doi.org/10.1016/j.bios.2015.05.050
Gold Nanoparticle Labels Custom Designed for Lateral Flow Assays. Available at: https://nanohybrids.net/pages/gold-nanoparticles-for-lateral-flow-assays. Accessed 17 Dec 2019
Hildebrandt, N.: Biofunctional quantum dots: Controlled conjugation for multiplexed biosensors. ACS Nano 5, 5286–5290 (2011). https://doi.org/10.1021/nn2023123
Wu, R., et al.: Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chim. Acta 1008, 1–7 (2018). https://doi.org/10.1016/j.aca.2017.12.031
Bai, Y., et al.: A sensitive lateral flow test strip based on silica nanoparticle/CdTe quantum dot composite reporter probes. RSC Adv. 2, 1778–1781 (2012). https://doi.org/10.1039/C2RA00976E
Li, X., et al.: Ultrasensitive lateral-flow assays based on quantum dot encapsulations with signal amplification. J. Nanopart. Res. 20, 139 (2018). https://doi.org/10.1007/s11051-018-4241-3
Morales-Narváez, E., Naghdi, T., Zor, E., Merkoçi, A.: Photoluminescent lateral-flow immunoassay revealed by graphene oxide: highly sensitive paper-based pathogen detection. Anal. Chem. 87, 8573–8577 (2015). https://doi.org/10.1021/acs.analchem.5b02383
Qu, H., et al.: Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosens. Bioelectron. 81, 358–362 (2016). https://doi.org/10.1016/j.bios.2016.03.008
Berlina, A.N., Taranova, N.A., Zherdev, A.V., Vengerov, Y.Y., Dzantiev, B.B.: Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal. Bioanal. Chem. 405, 4997–5000 (2013). https://doi.org/10.1007/s00216-013-6876-3
Li, Z., et al.: Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 82, 7008–7014 (2010). https://doi.org/10.1021/ac101405a
Wang, J., et al.: Quantum dot-based lateral flow test strips for highly sensitive detection of the tetanus antibody. ACS Omega 4, 6789–6795 (2019). https://doi.org/10.1021/acsomega.9b00657
Koets, M., Sander, I., Bogdanovic, J., Doekes, G., van Amerongen, A.: A rapid lateral flow immunoassay for the detection of fungal alpha-amylase at the workplace. J. Environ. Monit. 8, 942–946 (2006). https://doi.org/10.1039/b605389k
Linares, E.M., Kubota, L.T., Michaelis, J., Thalhammer, S.: Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J. Immunol. Methods 375, 264–270 (2012). https://doi.org/10.1016/j.jim.2011.11.003
Qiu, W., et al.: Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens. Bioelectron. 64, 367–372 (2015). https://doi.org/10.1016/j.bios.2014.09.028
Mao, X., et al.: Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal. Chem. 81, 1660–1668 (2009). https://doi.org/10.1021/ac8024653
Noguera, P., et al.: Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Anal. Bioanal. Chem. 399, 831–838 (2011). https://doi.org/10.1007/s00216-010-4334-z
van Dam, G.J., et al.: Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen. J. Clin. Microbiol. 42, 5458–5461 (2008). https://doi.org/10.1128/JCM.42.12.5458-5461.2004
Rayev, M., Shmagel, K.: Carbon–protein covalent conjugates in non-instrumental immunodiagnostic systems. J. Immunol. Methods 336, 9–15 (2008). https://doi.org/10.1016/j.jim.2008.03.005
Blažková, M., Micková-Holubová, B., Rauch, P., Fukal, L.: Immunochromatographic colloidal carbon-based assay for detection of methiocarb in surface water. Biosens. Bioelectron. 25, 753–758 (2009). https://doi.org/10.1016/j.bios.2009.08.023
Wiriyachaiporn, N., Sirikett, H., Maneeprakorn, W., Dharakul, T.: Carbon nanotag based visual detection of influenza A virus by a lateral flow immunoassay. Microchim. Acta 184, 1827–1835 (2017). https://doi.org/10.1007/s00604-017-2191-6
Chen, A., Yang, S.: Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 71, 230–242 (2015). https://doi.org/10.1016/j.bios.2015.04.041
Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990). https://doi.org/10.1126/science.2200121
Wu, W., et al.: A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta 861, 62–68 (2015). https://doi.org/10.1016/j.aca.2014.12.041
Zhang, J., et al.: Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Microchim. Acta 185, 364 (2018). https://doi.org/10.1007/s00604-018-2905-4
Zhou, W., et al.: An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J. Chromatogr. B 1022, 102–108 (2016). https://doi.org/10.1016/j.jchromb.2016.04.016
Dalirirad, S., Steckl, A.J.: Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem. 283, 79–86 (2019). https://doi.org/10.1016/j.snb.2018.11.161
Frohnmeyer, E., et al.: Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144, 1840–1849 (2019). https://doi.org/10.1039/C8AN01616J
Liu, J., Mazumdar, D., Lu, Y.: A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. 45, 7955–7959 (2006). https://doi.org/10.1002/anie.200603106
Javani, A., Javadi-Zarnaghi, F., Rasaee, M.J.: A multiplex protein-free lateral flow assay for detection of microRNAs based on unmodified molecular beacons. Anal. Biochem. 537, 99–105 (2017). https://doi.org/10.1016/j.ab.2017.09.005
Beni, V., Hayes, K., Lerga, T.M., O’Sullivan, C.K.: Development of a gold nano-particle-based fluorescent molecular beacon for detection of cystic fibrosis associated mutation. Biosens. Bioelectron. 26, 307–313 (2010). https://doi.org/10.1016/j.bios.2010.08.043
Mao, X., Xu, H., Zeng, Q., Zeng, L., Liu, G.: Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem. Commun. 21, 3065–3067 (2009). https://doi.org/10.1039/b822582f
Ying, N., et al.: Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex-specific nuclease and hybridization chain reaction. PLoS ONE 12, e0185091 (2017). https://doi.org/10.1371/journal.pone.0185091
Feng, S., et al.: Immunochromatographic diagnostic test analysis using Google Glass. ACS Nano 8, 3069–3079 (2014). https://doi.org/10.1021/nn500614k
Li, M., et al.: Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). J. Agric. Food Chem. 62, 10896–10902 (2014). https://doi.org/10.1021/jf503599x
Zhu, X., Shah, P., Stoff, S., Liu, H., Li, C.Z.: A paper electrode integrated lateral flow immunosensor for quantitative analysis of oxidative stress induced DNA damage. Analyst 139, 2850–2857 (2014). https://doi.org/10.1039/c4an00313f
Kim, C., et al.: Battery operated preconcentration-assisted lateral flow assay. Lab Chip 17, 2451–2458 (2017). https://doi.org/10.1039/C7LC00036G
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Lee, D., Lee, J.H. (2021). Paper-Based Biosensors with Lateral/Vertical Flow Assay. In: Lee, J.H. (eds) Paper-Based Medical Diagnostic Devices. Bioanalysis, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-8723-8_6
Download citation
DOI: https://doi.org/10.1007/978-981-15-8723-8_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-8722-1
Online ISBN: 978-981-15-8723-8
eBook Packages: EngineeringEngineering (R0)