Skip to main content

Paper-Based Biosensors with Lateral/Vertical Flow Assay

  • Chapter
  • First Online:
Paper-Based Medical Diagnostic Devices

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 10))

Abstract

The lateral flow assay (LFA), which is a simple paper-based device for the detection and analysis of disease, is now the most predominant diagnostic platform in point-of-care (POC) markets [1,2,3,4]. This market-dominating power stems from the unique characteristics of the LFA: low cost, portability, versatility, easy use, free of other instruments, and results within 10–20 min [5,6,7]. In addition, the LFA is compatible with various biological samples such as whole blood, plasma, serum, urine, sweat, and saliva and can be used for the detection of bacteria, viruses, protozoa, nucleic acids, proteins, toxins, and heavy metals [2, 7, 8]. Therefore, the LFA is an ideal POC platform. The concept of the LFA technique was first introduced by Plotz and Singer in 1956, using the latex agglutination test to diagnose rheumatoid arthritis [1]. The most common form of the LFA at present is a gold nanoparticle (AuNP)-based colorimetric LFA, first presented by Leuvering et al. in 1980, called the “sol particle immunoassay” (SPIA) [1, 2, 4]. The first LFA product to be commercialized was ClearbluTM launched by Unipath Ltd. in 1988; it was developed for individuals to diagnose pregnancy at home. Because the level of human chorionic gonadotropin (hCG) hormones rapidly increase in the urine of a pregnant woman, this LFA can detect such an increase, which appears as two blue lines [1, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rivas, L., de la Escosura-Muñiz, A., Pons, J., Merkoçi, A.: Lateral flow biosensors based on gold nanoparticles. Compr. Anal. Chem. 66, 569–605 (2014). https://doi.org/10.1016/B978-0-444-63285-2.00014-6

    Article  Google Scholar 

  2. Banerjee, R., Jaiswal, A.: Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 143, 1970–1996 (2018). https://doi.org/10.1039/c8an00307f

    Article  Google Scholar 

  3. O’Farrell, B.: Lateral flow immunoassay systems: evolution from the current state of the art to the next generation of highly sensitive, quantitative rapid assays. In: Wild, D. (ed.) The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques, 4th edn, pp. 89–107. Elsevier, Oxford, UK (2013)

    Google Scholar 

  4. van Amerongen, A., et al.: Lateral flow immunoassays. In: Vashist, S., Luong, J. (eds.) Handbook of Immunoassay Technologies, pp. 157–182. Academic Press, Cambridge, MA (2018)

    Google Scholar 

  5. Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013). https://doi.org/10.1039/C3LC50169H

    Article  Google Scholar 

  6. Juntunen, E.: Lateral Flow Immunoassays with Fluorescent Reporter Technologies. University of Turku, Turku, Finland (2018)

    Google Scholar 

  7. Posthuma-Trumpie, G.A., Korf, J., van Amerongen, A.: Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393, 569–582 (2009). https://doi.org/10.1007/s00216-008-2287-2

    Article  Google Scholar 

  8. Sajid, M., Kawde, A.-N., Daud, M.: Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 19, 689–705 (2015). https://doi.org/10.1016/j.jscs.2014.09.001

    Article  Google Scholar 

  9. Lateral Flow Assay Market. Available at: https://www.marketsandmarkets.com/Market-Reports/lateral-flow-assay-market-167205133.html. Accessed: 17 Dec 2019

  10. Lateral Flow Assay Market Size to surpass 6.6%+ CAGR up to 2024. Available at: https://www.marketwatch.com/press-release/lateral-flow-assay-market-size-to-surpass-66-cagr-up-to-2024-2019-06-03. Accessed: 17 Dec 2019

  11. Butler, S.A., Khanlian, S.A., Cole, L.A.: Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin. Chem. 47, 2131–2136 (2001)

    Article  Google Scholar 

  12. Fernández-Sánchez, C., et al.: One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J. Immunol. Methods 307, 1–12 (2005). https://doi.org/10.1016/j.jim.2005.08.014

    Article  Google Scholar 

  13. Xu, H., et al.: Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal. Chem. 81, 669–675 (2008). https://doi.org/10.1021/ac8020592

    Article  Google Scholar 

  14. Choi, D.H., et al.: A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 25, 1999–2002 (2010). https://doi.org/10.1016/j.bios.2010.01.019

    Article  Google Scholar 

  15. Parolo, C., de la Escosura-Muñiz, A., Merkoçi, A.: Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens. Bioelectron. 40, 412–416 (2013). https://doi.org/10.1016/j.bios.2012.06.049

    Article  Google Scholar 

  16. Wang, J.-Y., et al.: Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157:H7 in milk. RSC Adv. 5, 62300–62305 (2015). https://doi.org/10.1039/C5RA13279G

    Article  Google Scholar 

  17. Seo, K.-H., Holt, P.S., Stone, H.D., Gast, R.K.: Simple and rapid methods for detecting Salmonella enteritidis in raw eggs. Int. J. Food Microbiol. 87, 139–144 (2003). https://doi.org/10.1016/S0168-1605(03)00053-9

    Article  Google Scholar 

  18. Huang, S.-H.: Gold nanoparticle-based immunochromatographic assay for the detection of Staphylococcus aureus. Sens. Actuators B Chem. 127, 335–340 (2007). https://doi.org/10.1016/j.snb.2007.04.027

    Article  Google Scholar 

  19. Wang, D.-B., et al.: Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosens. Bioelectron. 42, 661–667 (2013). https://doi.org/10.1016/j.bios.2012.10.088

    Article  Google Scholar 

  20. Liu, H., et al.: Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosens. Bioelectron. 62, 38–46 (2014). https://doi.org/10.1016/j.bios.2014.06.020

    Article  Google Scholar 

  21. Le, T.T., et al.: Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Anal. Chem. 89, 6781–6786 (2017). https://doi.org/10.1021/acs.analchem.7b01149

    Article  Google Scholar 

  22. Workman, S., et al.: Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J. Virol. Methods 160, 14–21 (2009). https://doi.org/10.1016/j.jviromet.2009.04.003

    Article  Google Scholar 

  23. Brangel, P., et al.: A serological point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors. ACS Nano 12, 63–73 (2018). https://doi.org/10.1021/acsnano.7b07021

    Article  Google Scholar 

  24. Hagström, A.E.V., et al.: Sensitive detection of norovirus using phage nanoparticle reporters in lateral-flow assay. PLoS ONE 10, e0126571 (2015). https://doi.org/10.1371/journal.pone.0126571

    Article  Google Scholar 

  25. Lee, D., et al.: Simple and highly sensitive molecular diagnosis of Zika virus by lateral flow assays. Anal. Chem. 88, 12272–12278 (2016). https://doi.org/10.1021/acs.analchem.6b03460

    Article  Google Scholar 

  26. Nash, M.A., Waitumbi, J.N., Hoffman, A.S., Yager, P., Stayton, P.S.: Multiplexed enrichment and detection of malarial biomarkers using a stimuli-responsive iron oxide and gold nanoparticle reagent system. ACS Nano 6, 6776–6785 (2012). https://doi.org/10.1021/nn3015008

    Article  Google Scholar 

  27. Rivas, L., et al.: Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res. 8, 3704–3714 (2015). https://doi.org/10.1007/s12274-015-0870-3

    Article  Google Scholar 

  28. van Dam, G.J., et al.: A robust dry reagent lateral flow assay for diagnosis of active schistosomiasis by detection of Schistosoma circulating anodic antigen. Exp. Parasitol. 135, 274–282 (2013). https://doi.org/10.1016/j.exppara.2013.06.017

    Article  Google Scholar 

  29. Mazumdar, D., Liu, J., Lu, G., Zhou, J., Lu, Y.: Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates. Chem. Commun. 46, 1416–1418 (2010). https://doi.org/10.1039/B917772H

    Article  Google Scholar 

  30. He, Y., et al.: Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens. Bioelectron. 26, 4464–4470 (2011). https://doi.org/10.1016/j.bios.2011.05.003

    Article  Google Scholar 

  31. López Marzo, A.M., Pons, J., Blake, D.A., Merkoçi, A.: High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters. Biosens. Bioelectron. 47, 190–198 (2013). https://doi.org/10.1016/j.bios.2013.02.031

  32. Gandhi, S., Caplash, N., Sharma, P., Raman Suri, C.: Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples. Biosens. Bioelectron. 25, 502–505 (2009). https://doi.org/10.1016/j.bios.2009.07.018

  33. Byzova, N.A., Zvereva, E.A., Zherdev, A.V., Eremin, S.A., Dzantiev, B.B.: Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta 81, 843–848 (2010). https://doi.org/10.1016/j.talanta.2010.01.02

    Article  Google Scholar 

  34. Byzova, N.A., et al.: Rapid immunochromatographic assay for ofloxacin in animal original foodstuffs using native antisera labeled by colloidal gold. Talanta 119, 125–132 (2014). https://doi.org/10.1016/j.talanta.2013.10.054

    Article  Google Scholar 

  35. Lutz, B., et al.: Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13, 2840–2847 (2013). https://doi.org/10.1039/c3lc50178g

    Article  Google Scholar 

  36. Toley, B.J., et al.: Tunable-delay shunts for paper microfluidic devices. Anal. Chem. 85, 11545–11552 (2013). https://doi.org/10.1021/ac4030939

    Article  Google Scholar 

  37. Toley, B.J., et al.: A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15, 1432–1444 (2015). https://doi.org/10.1039/c4lc01155d

    Article  Google Scholar 

  38. Shin, J.H., Park, J., Kim, S.H., Park, J.-K.: Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014). https://doi.org/10.1063/1.4899773

    Article  Google Scholar 

  39. Rivas, L., Medina-Sánchez, M., de la Escosura-Muñiz, A., Merkoçi, A.: Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip 14, 4406–4414 (2014). https://doi.org/10.1039/c4lc00972j

    Article  Google Scholar 

  40. Choi, J.R., et al.: Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing. Anal. Chem. 88, 6254–6264 (2016). https://doi.org/10.1021/acs.analchem.6b00195

    Article  Google Scholar 

  41. Quesada-González, D., Merkoçi, A.: Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 73, 47–63 (2015). https://doi.org/10.1016/j.bios.2015.05.050

    Article  Google Scholar 

  42. Gold Nanoparticle Labels Custom Designed for Lateral Flow Assays. Available at: https://nanohybrids.net/pages/gold-nanoparticles-for-lateral-flow-assays. Accessed 17 Dec 2019

  43. Hildebrandt, N.: Biofunctional quantum dots: Controlled conjugation for multiplexed biosensors. ACS Nano 5, 5286–5290 (2011). https://doi.org/10.1021/nn2023123

    Article  Google Scholar 

  44. Wu, R., et al.: Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chim. Acta 1008, 1–7 (2018). https://doi.org/10.1016/j.aca.2017.12.031

    Article  Google Scholar 

  45. Bai, Y., et al.: A sensitive lateral flow test strip based on silica nanoparticle/CdTe quantum dot composite reporter probes. RSC Adv. 2, 1778–1781 (2012). https://doi.org/10.1039/C2RA00976E

    Article  Google Scholar 

  46. Li, X., et al.: Ultrasensitive lateral-flow assays based on quantum dot encapsulations with signal amplification. J. Nanopart. Res. 20, 139 (2018). https://doi.org/10.1007/s11051-018-4241-3

    Article  Google Scholar 

  47. Morales-Narváez, E., Naghdi, T., Zor, E., Merkoçi, A.: Photoluminescent lateral-flow immunoassay revealed by graphene oxide: highly sensitive paper-based pathogen detection. Anal. Chem. 87, 8573–8577 (2015). https://doi.org/10.1021/acs.analchem.5b02383

    Article  Google Scholar 

  48. Qu, H., et al.: Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosens. Bioelectron. 81, 358–362 (2016). https://doi.org/10.1016/j.bios.2016.03.008

    Article  Google Scholar 

  49. Berlina, A.N., Taranova, N.A., Zherdev, A.V., Vengerov, Y.Y., Dzantiev, B.B.: Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal. Bioanal. Chem. 405, 4997–5000 (2013). https://doi.org/10.1007/s00216-013-6876-3

    Article  Google Scholar 

  50. Li, Z., et al.: Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 82, 7008–7014 (2010). https://doi.org/10.1021/ac101405a

    Article  Google Scholar 

  51. Wang, J., et al.: Quantum dot-based lateral flow test strips for highly sensitive detection of the tetanus antibody. ACS Omega 4, 6789–6795 (2019). https://doi.org/10.1021/acsomega.9b00657

    Article  Google Scholar 

  52. Koets, M., Sander, I., Bogdanovic, J., Doekes, G., van Amerongen, A.: A rapid lateral flow immunoassay for the detection of fungal alpha-amylase at the workplace. J. Environ. Monit. 8, 942–946 (2006). https://doi.org/10.1039/b605389k

    Article  Google Scholar 

  53. Linares, E.M., Kubota, L.T., Michaelis, J., Thalhammer, S.: Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J. Immunol. Methods 375, 264–270 (2012). https://doi.org/10.1016/j.jim.2011.11.003

    Article  Google Scholar 

  54. Qiu, W., et al.: Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens. Bioelectron. 64, 367–372 (2015). https://doi.org/10.1016/j.bios.2014.09.028

    Article  Google Scholar 

  55. Mao, X., et al.: Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal. Chem. 81, 1660–1668 (2009). https://doi.org/10.1021/ac8024653

    Article  Google Scholar 

  56. Noguera, P., et al.: Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Anal. Bioanal. Chem. 399, 831–838 (2011). https://doi.org/10.1007/s00216-010-4334-z

    Article  Google Scholar 

  57. van Dam, G.J., et al.: Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen. J. Clin. Microbiol. 42, 5458–5461 (2008). https://doi.org/10.1128/JCM.42.12.5458-5461.2004

    Article  Google Scholar 

  58. Rayev, M., Shmagel, K.: Carbon–protein covalent conjugates in non-instrumental immunodiagnostic systems. J. Immunol. Methods 336, 9–15 (2008). https://doi.org/10.1016/j.jim.2008.03.005

    Article  Google Scholar 

  59. Blažková, M., Micková-Holubová, B., Rauch, P., Fukal, L.: Immunochromatographic colloidal carbon-based assay for detection of methiocarb in surface water. Biosens. Bioelectron. 25, 753–758 (2009). https://doi.org/10.1016/j.bios.2009.08.023

    Article  Google Scholar 

  60. Wiriyachaiporn, N., Sirikett, H., Maneeprakorn, W., Dharakul, T.: Carbon nanotag based visual detection of influenza A virus by a lateral flow immunoassay. Microchim. Acta 184, 1827–1835 (2017). https://doi.org/10.1007/s00604-017-2191-6

    Article  Google Scholar 

  61. https://fnkprddata.blob.core.windows.net/domestic/download/pdf/IBS_A_guide_to_lateral_flow_immunoassays.pdf

  62. Chen, A., Yang, S.: Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 71, 230–242 (2015). https://doi.org/10.1016/j.bios.2015.04.041

    Article  Google Scholar 

  63. Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990). https://doi.org/10.1126/science.2200121

    Article  Google Scholar 

  64. Wu, W., et al.: A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta 861, 62–68 (2015). https://doi.org/10.1016/j.aca.2014.12.041

    Article  Google Scholar 

  65. Zhang, J., et al.: Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Microchim. Acta 185, 364 (2018). https://doi.org/10.1007/s00604-018-2905-4

    Article  Google Scholar 

  66. Zhou, W., et al.: An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J. Chromatogr. B 1022, 102–108 (2016). https://doi.org/10.1016/j.jchromb.2016.04.016

    Article  Google Scholar 

  67. Dalirirad, S., Steckl, A.J.: Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem. 283, 79–86 (2019). https://doi.org/10.1016/j.snb.2018.11.161

    Article  Google Scholar 

  68. Frohnmeyer, E., et al.: Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144, 1840–1849 (2019). https://doi.org/10.1039/C8AN01616J

    Article  Google Scholar 

  69. Liu, J., Mazumdar, D., Lu, Y.: A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. 45, 7955–7959 (2006). https://doi.org/10.1002/anie.200603106

    Article  Google Scholar 

  70. Javani, A., Javadi-Zarnaghi, F., Rasaee, M.J.: A multiplex protein-free lateral flow assay for detection of microRNAs based on unmodified molecular beacons. Anal. Biochem. 537, 99–105 (2017). https://doi.org/10.1016/j.ab.2017.09.005

    Article  Google Scholar 

  71. Beni, V., Hayes, K., Lerga, T.M., O’Sullivan, C.K.: Development of a gold nano-particle-based fluorescent molecular beacon for detection of cystic fibrosis associated mutation. Biosens. Bioelectron. 26, 307–313 (2010). https://doi.org/10.1016/j.bios.2010.08.043

    Article  Google Scholar 

  72. Mao, X., Xu, H., Zeng, Q., Zeng, L., Liu, G.: Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem. Commun. 21, 3065–3067 (2009). https://doi.org/10.1039/b822582f

    Article  Google Scholar 

  73. Ying, N., et al.: Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex-specific nuclease and hybridization chain reaction. PLoS ONE 12, e0185091 (2017). https://doi.org/10.1371/journal.pone.0185091

    Article  Google Scholar 

  74. Feng, S., et al.: Immunochromatographic diagnostic test analysis using Google Glass. ACS Nano 8, 3069–3079 (2014). https://doi.org/10.1021/nn500614k

    Article  Google Scholar 

  75. Li, M., et al.: Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). J. Agric. Food Chem. 62, 10896–10902 (2014). https://doi.org/10.1021/jf503599x

    Article  Google Scholar 

  76. Zhu, X., Shah, P., Stoff, S., Liu, H., Li, C.Z.: A paper electrode integrated lateral flow immunosensor for quantitative analysis of oxidative stress induced DNA damage. Analyst 139, 2850–2857 (2014). https://doi.org/10.1039/c4an00313f

    Article  Google Scholar 

  77. Kim, C., et al.: Battery operated preconcentration-assisted lateral flow assay. Lab Chip 17, 2451–2458 (2017). https://doi.org/10.1039/C7LC00036G

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hoon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, D., Lee, J.H. (2021). Paper-Based Biosensors with Lateral/Vertical Flow Assay. In: Lee, J.H. (eds) Paper-Based Medical Diagnostic Devices. Bioanalysis, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-8723-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8723-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8722-1

  • Online ISBN: 978-981-15-8723-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics