Skip to main content

Basic Paper-Based Microfluidics/Electronics Theory

  • Chapter
  • First Online:
Paper-Based Medical Diagnostic Devices

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 10))

Abstract

This chapter covers the fundamental theory related to paper-based microfluidics. A brief introduction of the field is presented followed by description of the physical and electrical properties of paper which play a key role in accurate prediction of flow rate. The theory related to fluid flow in paper is then described in detail and categorized into wet-out (Lucas-Washburn equation) and fully wetted (Darcy’s Law) flow for various boundary conditions, geometries, and external factors. Finally, the theory of electro-kinetics in paper is presented with electro-osmosis, electrophoresis, and electrowetting on a dielectric as potential techniques for fluid or particle manipulation in paper-based microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M.: Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007). https://doi.org/10.1002/anie.200603817

    Article  Google Scholar 

  2. Martinez, A.W., Phillips, S.T., Wiley, B.J., Gupta, M., Whitesides, G.M.: FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 8, 2146–2150 (2008). https://doi.org/10.1039/b811135a

  3. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006). https://doi.org/10.1038/nature05058

    Article  Google Scholar 

  4. Martinez, A.W., Phillips, S.T., Whitesides, G.M.: Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. 105, 19606–19611 (2008). https://doi.org/10.1073/pnas.0810903105

    Article  Google Scholar 

  5. Credou, J., Berthelot, T.: Cellulose: From biocompatible to bioactive material. J. Mater. Chem. B 2, 4767–4788 (2014). https://doi.org/10.1039/C4TB00431K

    Article  Google Scholar 

  6. Jafry, A.T., Lim, H., Kang, S.I., Suk, J.W., Lee, J.: A comparative study of paper-based microfluidic devices with respect to channel geometry. Colloids Surf. A: Physicochem. Eng. Aspects 492, 190–198 (2016). https://doi.org/10.1016/j.colsurfa.2015.12.033

    Article  Google Scholar 

  7. Cho, H.H., et al.: A paper-based platform for long-term deposition of nanoparticles with exceptional redispersibility, stability, and functionality. Part. Part. Sys. Charact. 36, 1800483 (2019). https://doi.org/10.1002/ppsc.201800483

    Article  Google Scholar 

  8. Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013). https://doi.org/10.1039/C3LC50169H

    Article  Google Scholar 

  9. Jagadeesan, K.K., Kumar, S., Sumana, G.: Application of conducting paper for selective detection of troponin. Electrochem. Commun. 20, 71–74 (2012). https://doi.org/10.1016/j.elecom.2012.03.041

    Article  Google Scholar 

  10. Nery, E.W., Kubota, L.T.: Sensing approaches on paper-based devices: a review. Anal. Bioanal. Chem. 405, 7573–7595 (2013). https://doi.org/10.1007/s00216-013-6911-4

    Article  Google Scholar 

  11. Bracher, P.J., Gupta, M., Mack, E.T., Whitesides, G.M.: Heterogeneous films of ionotropic hydrogels fabricated from delivery templates of patterned paper. ACS Appl. Mater. Interfaces 1, 1807–1812 (2009). https://doi.org/10.1021/am900340m

    Article  Google Scholar 

  12. Kouisni, L., Rochefort, D.: Confocal microscopy study of polymer microcapsules for enzyme immobilization in paper substrates. J. Appl. Polym. Sci. 111, 1–10 (2009). https://doi.org/10.1002/app.28997

  13. Zhang, Y., Rochefort, D.: Activity, conformation and thermal stability of laccase and glucose oxidase in poly(ethyleneimine) microcapsules for immobilization in paper. Proc. Biochem. 46, 993–1000 (2011). https://doi.org/10.1016/j.procbio.2011.01.006

    Article  Google Scholar 

  14. Roberts, J.C.: Applications of paper chemistry. In: Roberts, J.C. (ed.) Paper Chemistry, pp. 1–8. Springer Netherlands, Dordrecht (1996). https://doi.org/10.1007/978-94-011-0605-4_1

  15. Quinn, M.J.: Chapter 11—Wildlife toxicity assessment for nitrocellulose. In: Williams, M.A., Reddy, G., Quinn, M.J., Johnson, M.S. (eds.) Wildlife Toxicity Assessments for Chemicals of Military Concern, pp. 217–226. Elsevier, Oxford, UK (2015). https://doi.org/10.1016/b978-0-12-800020-5.00011-9

  16. Arrastia, M., et al.: Development of a microfluidic-based assay on a novel nitrocellulose platform. Electrophoresis 36, 884–888 (2015). https://doi.org/10.1002/elps.201400421

    Article  Google Scholar 

  17. Li, X., Tian, J., Garnier, G., Shen, W.: Fabrication of paper-based microfluidic sensors by printing. Colloids Surf. B: Biointerfaces 76, 564–570 (2010). https://doi.org/10.1016/j.colsurfb.2009.12.023

    Article  Google Scholar 

  18. Al-Tamimi, M., Shen, W., Zeineddine, R., Tran, H., Garnier, G.: Validation of paper-based assay for rapid blood typing. Anal. Chem. 84, 1661–1668 (2012). https://doi.org/10.1021/ac202948t

    Article  Google Scholar 

  19. Martinez, A.W., et al.: Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time. Off-Site Diagn. Anal. Chem. 80, 3699–3707 (2008). https://doi.org/10.1021/ac800112r

    Article  Google Scholar 

  20. Zhong, Z.W., Wang, Z.P., Huang, G.X.D.: Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsys. Technol. 18, 649–659 (2012). https://doi.org/10.1007/s00542-012-1469-1

    Article  Google Scholar 

  21. Soum, V., et al.: Affordable fabrication of conductive electrodes and dielectric films for a paper-based digital microfluidic chip. Micromachines-Basel 10, 109 (2019). https://doi.org/10.3390/mi10020109

    Article  Google Scholar 

  22. Fang, L., Jiang, J., Wang, J., Deng, C.: Non-uniform capillary model for unidirectional fiber bundles considering pore size distribution. J. Reinf. Plastics Compos. 33, 1430–1440 (2014). https://doi.org/10.1177/0731684414533739

    Article  Google Scholar 

  23. Batch, G.L., Chen, Y.-T., Macoskot, C.W.: Capillary impregnation of aligned fibrous beds: Experiments and model. J. Reinf. Plastics Compos. 15, 1027–1051 (1996). https://doi.org/10.1177/073168449601501004

    Article  Google Scholar 

  24. Park, J., Shin, J.H., Park, J.-K.: Experimental analysis of porosity and permeability in pressed paper. Micromachines-Basel 7, 48 (2016)

    Article  Google Scholar 

  25. Dullien, F.A.L.: Pore structure. In: Dullien, F.A.L. (ed.) Porous Media (Second Edition). Academic Press, San Diego (1992). https://doi.org/10.1016/b978-0-12-223651-8.50007-9

  26. Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. Part A Appl. Sci. Manuf. 40, 860–869 (2009). https://doi.org/10.1016/j.compositesa.2009.04.009

  27. Gebart, B.R.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26, 1100–1133 (1992). https://doi.org/10.1177/002199839202600802

    Article  Google Scholar 

  28. Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89, 251–263 (2011). https://doi.org/10.1007/s11242-011-9767-0

  29. Comiti, J., Renaud, M.: A new model for determining mean structure parameters of fixed beds from pressure drop measurements: Application to beds packed with parallelepipedal particles. Chem. Eng. Sci. 44, 1539–1545 (1989). https://doi.org/10.1016/0009-2509(89)80031-4

    Article  Google Scholar 

  30. Fraiwan, A., Lee, H., Choi, S.: A multianode paper-based microbial fuel cell: A potential power source for disposable biosensors. IEEE Sens. J. 14, 3385–3390 (2014). https://doi.org/10.1109/JSEN.2014.2332075

    Article  Google Scholar 

  31. Siegel, A.C., et al.: Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20, 28–35 (2010). https://doi.org/10.1002/adfm.200901363

    Article  Google Scholar 

  32. Jafry, A.T., Lim, H., Sung, W.-K., Lee, J.: Flexible time–temperature indicator: A versatile platform for laminated paper-based analytical devices. Microfluid. Nanofluid. 21, 57 (2017). https://doi.org/10.1007/s10404-017-1883-x

    Article  Google Scholar 

  33. Jafry, A.T., et al.: Double-sided electrohydrodynamic jet printing of two-dimensional electrode array in paper-based digital microfluidics. Sens. Actuators B Chem. 282, 831–837 (2019). https://doi.org/10.1016/j.snb.2018.11.135

    Article  Google Scholar 

  34. Hu, L., et al.: Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6, 513–518 (2013). https://doi.org/10.1039/C2EE23635D

    Article  Google Scholar 

  35. Hu, L., et al.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. 106, 21490–21494 (2009). https://doi.org/10.1073/pnas.0908858106

    Article  Google Scholar 

  36. Tobjörk, D., Österbacka, R.: Paper electronics. Adv. Mater. 23, 1935–1961 (2011). https://doi.org/10.1002/adma.201004692

    Article  Google Scholar 

  37. Brodie, I., Dahlquist, J.A., Sher, A.: Measurement of charge transfer in electrographic processes. J. Appl. Phys. 39, 1618–1624 (1968). https://doi.org/10.1063/1.1656404

    Article  Google Scholar 

  38. Sirviö, P., Backfolk, K., Maldzius, R., Sidaravicius, J., Montrimas, E.: Dependence of paper surface and volume resistivity on electric field strength. J. Imaging Sci. Technol. 52, 30501 (2008). https://doi.org/10.2352/J.ImagingSci.Technol.(2008)52:3(030501)

    Article  Google Scholar 

  39. Morgan, V.T.: Effects of frequency, temperature, compression, and air pressure on the dielectric properties of a multilayer stack of dry kraft paper. IEEE Trans. Dielectr. Electr. Insul. 5, 125–131 (1998). https://doi.org/10.1109/94.660818

    Article  Google Scholar 

  40. Backfolk, K., et al.: Coating: Effect of base paper grammage and electrolyte content on electrical and dielectric properties of coated papers. Nord. Pulp Pap. Res. J. 25, 319–327 (2010). https://doi.org/10.3183/npprj-2010-25-03-p319-327

    Article  Google Scholar 

  41. Murphy, E.J.: The dependence of the conductivity of cellulose, silk and wool on their water content. J. Phys. Chem. Solids 16, 115–122 (1960). https://doi.org/10.1016/0022-3697(60)90081-0

    Article  Google Scholar 

  42. Nilsson, M., Strømme, M.: Electrodynamic investigations of conduction processes in humid microcrystalline cellulose tablets. J. Phys. Chem. B 109, 5450–5455 (2005). https://doi.org/10.1021/jp046991a

    Article  Google Scholar 

  43. Christie, J.H., Sylvander, S.R., Woodhead, I.M., Irie, K.: The dielectric properties of humid cellulose. J. Non-Cryst. Solids 341, 115–123 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.05.014

    Article  Google Scholar 

  44. Simula, S., et al.: Measurement of the dielectric properties of paper. J. Imaging Sci. Technol. 43, 472–477 (1999)

    Google Scholar 

  45. Kohman, G.T.: Cellulose as an insulating material. Ind. Eng. Chem. 31, 807–817 (1939). https://doi.org/10.1021/ie50355a005

    Article  Google Scholar 

  46. Fahmy, T.Y.A., Mobarak, F., El-Meligy, M.G.: Introducing undeinked old newsprint as a new resource of electrical purposes paper. Wood Sci. Technol. 42, 691–698 (2008). https://doi.org/10.1007/s00226-008-0180-y

    Article  Google Scholar 

  47. Martins, R., et al.: Write-erase and read paper memory transistor. Appl. Phys. Lett. 93, 203501 (2008). https://doi.org/10.1063/1.3030873

    Article  Google Scholar 

  48. Lim, H., Jafry, A.T., Lee, J.: Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 24, 2869 (2019)

    Article  Google Scholar 

  49. Dang-Vu, T., Hupka, J.: Characterization of porous materials by capillary rise method. Physicochem. Probl. Miner. Process. 39, 47–65 (2005)

    Google Scholar 

  50. Munson, B.R., Okiishi, T.H., Huebsch, W.W., Rothmayer, A.P.: Fluid Mechanics. Wiley, Singapore (2013)

    Google Scholar 

  51. Washburn, E.W.: The Dynamics Of Capillary Flow. Phys. Rev. 17, 273–283 (1921). https://doi.org/10.1103/PhysRev.17.273

    Article  Google Scholar 

  52. Oliver, J.F.: Wetting and penetration of paper surfaces. Colloids Surf. Reprographic Technol. ACS Symp. Ser. 200, 435–453 (1982). https://doi.org/10.1021/bk-1982-0200.ch022

    Article  Google Scholar 

  53. Leelajariyakul, S., Noguchi, H., Kiatkamjornwong, S.: Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog. Org. Coat. 62, 145–161 (2008). https://doi.org/10.1016/j.porgcoat.2007.10.005

    Article  Google Scholar 

  54. Hong, S., Kim, W.: Dynamics of water imbibition through paper channels with wax boundaries. Microfluid. Nanofluid. 19, 845–853 (2015). https://doi.org/10.1007/s10404-015-1611-3

    Article  Google Scholar 

  55. Kiesvaara, J., Yliruusi, J.: The use of the Washburn method in determining the contact angles of lactose powder. Int. J. Pharm. 92, 81–88 (1993). https://doi.org/10.1016/0378-5173(93)90266-I

    Article  Google Scholar 

  56. Fries, N., Dreyer, M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320, 259–263 (2008). https://doi.org/10.1016/j.jcis.2008.01.009

    Article  Google Scholar 

  57. Carrilho, E., Martinez, A.W., Whitesides, G.M.: Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009). https://doi.org/10.1021/ac901071p

    Article  Google Scholar 

  58. Lu, Y., Shi, W., Jiang, L., Qin, J., Lin, B.: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30, 1497–1500 (2009). https://doi.org/10.1002/elps.200800563

    Article  Google Scholar 

  59. Dungchai, W., Chailapakul, O., Henry, C.S.: A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136, 77–82 (2011). https://doi.org/10.1039/c0an00406e

    Article  Google Scholar 

  60. Wang, S., et al.: Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212–218 (2012). https://doi.org/10.1016/j.bios.2011.10.019

    Article  Google Scholar 

  61. He, Y., Wu, W.-B., Fu, J.-Z.: Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv. 5, 2694–2701 (2015). https://doi.org/10.1039/C4RA12165A

    Article  Google Scholar 

  62. Nargang, T.M., et al.: Photolithographic structuring of soft, extremely foldable and autoclavable hydrophobic barriers in paper. Anal. Methods 10, 4028–4035 (2018). https://doi.org/10.1039/c8ay01010b

    Article  Google Scholar 

  63. Strong, E.B., et al.: Wax-printed fluidic time delays for automating multi-step assays in paper-based microfluidic devices (MicroPADs. Inventions 4, 20 (2019). https://doi.org/10.3390/inventions4010020

    Article  Google Scholar 

  64. Liu, Z., Hu, J., Zhao, Y., Qu, Z., Xu, F.: Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl. Therm. Eng. 88, 280–287 (2015). https://doi.org/10.1016/j.applthermaleng.2014.09.057

    Article  Google Scholar 

  65. Camplisson, C.K., Schilling, K.M., Pedrotti, W.L., Stone, H.A., Martinez, A.W.: Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip 15, 4461–4466 (2015). https://doi.org/10.1039/C5LC01115A

    Article  Google Scholar 

  66. Castro, C., Rosillo, C., Tsutsui, H.: Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic channels. Microfluid. Nanofluid. 21, 21 (2017). https://doi.org/10.1007/s10404-017-1860-4

    Article  Google Scholar 

  67. Fries, N., Odic, K., Conrath, M., Dreyer, M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321, 118–129 (2008). https://doi.org/10.1016/j.jcis.2008.01.019

    Article  Google Scholar 

  68. Jang, I., Kim, G., Song, S.: Mathematical model for mixing in a paper-based channel and applications to the generation of a concentration gradient. Int. J. Heat Mass Transf. 120, 830–837 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.078

    Article  Google Scholar 

  69. Irimia, D., Geba, D.A., Toner, M.: Universal microfluidic gradient generator. Anal. Chem. 78, 3472–3477 (2006). https://doi.org/10.1021/ac0518710

    Article  Google Scholar 

  70. Berthier, E., Beebe, D.J.: Gradient generation platforms: New directions for an established microfluidic technology. Lab Chip 14, 3241–3247 (2014). https://doi.org/10.1039/C4LC00448E

    Article  Google Scholar 

  71. Philip, J.R.: Flow in porous media. Ann. Rev. Fluid Mech. 2, 177–204 (1970). https://doi.org/10.1146/annurev.fl.02.010170.001141

    Article  Google Scholar 

  72. Darcy, H.P.G.: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. In: Dalamont, V. (ed.) Les Fontaines publiques de la ville de Dijon. Paris (1856)

    Google Scholar 

  73. Fu, E., Ramsey, S.A., Kauffman, P., Lutz, B., Yager, P.: Transport in two-dimensional paper networks. Microfluid. Nanofluid. 10, 29–35 (2011). https://doi.org/10.1007/s10404-010-0643-y

    Article  Google Scholar 

  74. Elizalde, E., Urteaga, R., Berli, C.L.A.: Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15, 2173–2180 (2015). https://doi.org/10.1039/C4LC01487A

    Article  Google Scholar 

  75. Mendez, S., et al.: Imbibition in porous membranes of complex shape: Quasi-stationary flow in thin rectangular segments. Langmuir 26, 1380–1385 (2010). https://doi.org/10.1021/la902470b

    Article  Google Scholar 

  76. Lyklema, J.: Fundamentals of Interface and Colloid Science. Soft Colloids, vol. 5. Elsevier, Cambridge, UK (2005)

    Google Scholar 

  77. Kirby, B.J.: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, New York, NY (2010)

    Book  Google Scholar 

  78. Bruus, H.: Theoretical Microfluidics, vol. 18. Oxford University Press, Oxford, UK (2008)

    Google Scholar 

  79. Sritharan, D., Smela, E.: Fabrication of a miniature paper-based electroosmotic actuator. Polymers 8, 400 (2016). https://doi.org/10.3390/polym8110400

  80. Rosenfeld, T., Bercovici, M.: 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip 14, 4465–4474 (2014). https://doi.org/10.1039/C4LC00734D

    Article  Google Scholar 

  81. Niu, J.-C., et al.: Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis. Anal. Bioanal. Chem. 410, 1689–1695 (2018). https://doi.org/10.1007/s00216-017-0809-5

    Article  Google Scholar 

  82. Yu, S., et al.: Isoelectric focusing on microfluidic paper-based chips. Anal. Bioanal. Chem. 411, 5415–5422 (2019). https://doi.org/10.1007/s00216-019-02008-5

    Article  Google Scholar 

  83. Hong, S., Kwak, R., Kim, W.: Paper-based flow fractionation system applicable to preconcentration and field-flow separation. Anal. Chem. 88, 1682–1687 (2016). https://doi.org/10.1021/acs.analchem.5b03682

    Article  Google Scholar 

  84. Lippmann, G.: Relations entre les phénomènes électriques et capillaires. Gauthier-Villars, Paris, France (1875)

    Google Scholar 

  85. Orejon, D., Sefiane, K., Shanahan, M.E.R.: Young-Lippmann equation revisited for nano-suspensions. Appl. Phys. Lett. 102, 201601 (2013). https://doi.org/10.1063/1.4807120

    Article  Google Scholar 

  86. Ko, H., et al.: Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Adv. Mater. 26, 2335–2340 (2014). https://doi.org/10.1002/adma.201305014

    Article  Google Scholar 

  87. Fobel, R., Kirby, A.E., Ng, A.H.C., Farnood, R.R., Wheeler, A.R.: Paper microfluidics goes digital. Adv. Mater. 26, 2838–2843 (2014). https://doi.org/10.1002/adma.201305168

    Article  Google Scholar 

  88. Fobel, R., Fobel, C., Wheeler, A.R.: DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102, 193513 (2013). https://doi.org/10.1063/1.4807118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jafry, A.T., Lim, H., Lee, J. (2021). Basic Paper-Based Microfluidics/Electronics Theory. In: Lee, J.H. (eds) Paper-Based Medical Diagnostic Devices. Bioanalysis, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-8723-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8723-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8722-1

  • Online ISBN: 978-981-15-8723-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics