Abstract
This chapter covers the fundamental theory related to paper-based microfluidics. A brief introduction of the field is presented followed by description of the physical and electrical properties of paper which play a key role in accurate prediction of flow rate. The theory related to fluid flow in paper is then described in detail and categorized into wet-out (Lucas-Washburn equation) and fully wetted (Darcy’s Law) flow for various boundary conditions, geometries, and external factors. Finally, the theory of electro-kinetics in paper is presented with electro-osmosis, electrophoresis, and electrowetting on a dielectric as potential techniques for fluid or particle manipulation in paper-based microfluidic devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M.: Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007). https://doi.org/10.1002/anie.200603817
Martinez, A.W., Phillips, S.T., Wiley, B.J., Gupta, M., Whitesides, G.M.: FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 8, 2146–2150 (2008). https://doi.org/10.1039/b811135a
Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006). https://doi.org/10.1038/nature05058
Martinez, A.W., Phillips, S.T., Whitesides, G.M.: Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. 105, 19606–19611 (2008). https://doi.org/10.1073/pnas.0810903105
Credou, J., Berthelot, T.: Cellulose: From biocompatible to bioactive material. J. Mater. Chem. B 2, 4767–4788 (2014). https://doi.org/10.1039/C4TB00431K
Jafry, A.T., Lim, H., Kang, S.I., Suk, J.W., Lee, J.: A comparative study of paper-based microfluidic devices with respect to channel geometry. Colloids Surf. A: Physicochem. Eng. Aspects 492, 190–198 (2016). https://doi.org/10.1016/j.colsurfa.2015.12.033
Cho, H.H., et al.: A paper-based platform for long-term deposition of nanoparticles with exceptional redispersibility, stability, and functionality. Part. Part. Sys. Charact. 36, 1800483 (2019). https://doi.org/10.1002/ppsc.201800483
Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013). https://doi.org/10.1039/C3LC50169H
Jagadeesan, K.K., Kumar, S., Sumana, G.: Application of conducting paper for selective detection of troponin. Electrochem. Commun. 20, 71–74 (2012). https://doi.org/10.1016/j.elecom.2012.03.041
Nery, E.W., Kubota, L.T.: Sensing approaches on paper-based devices: a review. Anal. Bioanal. Chem. 405, 7573–7595 (2013). https://doi.org/10.1007/s00216-013-6911-4
Bracher, P.J., Gupta, M., Mack, E.T., Whitesides, G.M.: Heterogeneous films of ionotropic hydrogels fabricated from delivery templates of patterned paper. ACS Appl. Mater. Interfaces 1, 1807–1812 (2009). https://doi.org/10.1021/am900340m
Kouisni, L., Rochefort, D.: Confocal microscopy study of polymer microcapsules for enzyme immobilization in paper substrates. J. Appl. Polym. Sci. 111, 1–10 (2009). https://doi.org/10.1002/app.28997
Zhang, Y., Rochefort, D.: Activity, conformation and thermal stability of laccase and glucose oxidase in poly(ethyleneimine) microcapsules for immobilization in paper. Proc. Biochem. 46, 993–1000 (2011). https://doi.org/10.1016/j.procbio.2011.01.006
Roberts, J.C.: Applications of paper chemistry. In: Roberts, J.C. (ed.) Paper Chemistry, pp. 1–8. Springer Netherlands, Dordrecht (1996). https://doi.org/10.1007/978-94-011-0605-4_1
Quinn, M.J.: Chapter 11—Wildlife toxicity assessment for nitrocellulose. In: Williams, M.A., Reddy, G., Quinn, M.J., Johnson, M.S. (eds.) Wildlife Toxicity Assessments for Chemicals of Military Concern, pp. 217–226. Elsevier, Oxford, UK (2015). https://doi.org/10.1016/b978-0-12-800020-5.00011-9
Arrastia, M., et al.: Development of a microfluidic-based assay on a novel nitrocellulose platform. Electrophoresis 36, 884–888 (2015). https://doi.org/10.1002/elps.201400421
Li, X., Tian, J., Garnier, G., Shen, W.: Fabrication of paper-based microfluidic sensors by printing. Colloids Surf. B: Biointerfaces 76, 564–570 (2010). https://doi.org/10.1016/j.colsurfb.2009.12.023
Al-Tamimi, M., Shen, W., Zeineddine, R., Tran, H., Garnier, G.: Validation of paper-based assay for rapid blood typing. Anal. Chem. 84, 1661–1668 (2012). https://doi.org/10.1021/ac202948t
Martinez, A.W., et al.: Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time. Off-Site Diagn. Anal. Chem. 80, 3699–3707 (2008). https://doi.org/10.1021/ac800112r
Zhong, Z.W., Wang, Z.P., Huang, G.X.D.: Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsys. Technol. 18, 649–659 (2012). https://doi.org/10.1007/s00542-012-1469-1
Soum, V., et al.: Affordable fabrication of conductive electrodes and dielectric films for a paper-based digital microfluidic chip. Micromachines-Basel 10, 109 (2019). https://doi.org/10.3390/mi10020109
Fang, L., Jiang, J., Wang, J., Deng, C.: Non-uniform capillary model for unidirectional fiber bundles considering pore size distribution. J. Reinf. Plastics Compos. 33, 1430–1440 (2014). https://doi.org/10.1177/0731684414533739
Batch, G.L., Chen, Y.-T., Macoskot, C.W.: Capillary impregnation of aligned fibrous beds: Experiments and model. J. Reinf. Plastics Compos. 15, 1027–1051 (1996). https://doi.org/10.1177/073168449601501004
Park, J., Shin, J.H., Park, J.-K.: Experimental analysis of porosity and permeability in pressed paper. Micromachines-Basel 7, 48 (2016)
Dullien, F.A.L.: Pore structure. In: Dullien, F.A.L. (ed.) Porous Media (Second Edition). Academic Press, San Diego (1992). https://doi.org/10.1016/b978-0-12-223651-8.50007-9
Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. Part A Appl. Sci. Manuf. 40, 860–869 (2009). https://doi.org/10.1016/j.compositesa.2009.04.009
Gebart, B.R.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26, 1100–1133 (1992). https://doi.org/10.1177/002199839202600802
Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89, 251–263 (2011). https://doi.org/10.1007/s11242-011-9767-0
Comiti, J., Renaud, M.: A new model for determining mean structure parameters of fixed beds from pressure drop measurements: Application to beds packed with parallelepipedal particles. Chem. Eng. Sci. 44, 1539–1545 (1989). https://doi.org/10.1016/0009-2509(89)80031-4
Fraiwan, A., Lee, H., Choi, S.: A multianode paper-based microbial fuel cell: A potential power source for disposable biosensors. IEEE Sens. J. 14, 3385–3390 (2014). https://doi.org/10.1109/JSEN.2014.2332075
Siegel, A.C., et al.: Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20, 28–35 (2010). https://doi.org/10.1002/adfm.200901363
Jafry, A.T., Lim, H., Sung, W.-K., Lee, J.: Flexible time–temperature indicator: A versatile platform for laminated paper-based analytical devices. Microfluid. Nanofluid. 21, 57 (2017). https://doi.org/10.1007/s10404-017-1883-x
Jafry, A.T., et al.: Double-sided electrohydrodynamic jet printing of two-dimensional electrode array in paper-based digital microfluidics. Sens. Actuators B Chem. 282, 831–837 (2019). https://doi.org/10.1016/j.snb.2018.11.135
Hu, L., et al.: Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6, 513–518 (2013). https://doi.org/10.1039/C2EE23635D
Hu, L., et al.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. 106, 21490–21494 (2009). https://doi.org/10.1073/pnas.0908858106
Tobjörk, D., Österbacka, R.: Paper electronics. Adv. Mater. 23, 1935–1961 (2011). https://doi.org/10.1002/adma.201004692
Brodie, I., Dahlquist, J.A., Sher, A.: Measurement of charge transfer in electrographic processes. J. Appl. Phys. 39, 1618–1624 (1968). https://doi.org/10.1063/1.1656404
Sirviö, P., Backfolk, K., Maldzius, R., Sidaravicius, J., Montrimas, E.: Dependence of paper surface and volume resistivity on electric field strength. J. Imaging Sci. Technol. 52, 30501 (2008). https://doi.org/10.2352/J.ImagingSci.Technol.(2008)52:3(030501)
Morgan, V.T.: Effects of frequency, temperature, compression, and air pressure on the dielectric properties of a multilayer stack of dry kraft paper. IEEE Trans. Dielectr. Electr. Insul. 5, 125–131 (1998). https://doi.org/10.1109/94.660818
Backfolk, K., et al.: Coating: Effect of base paper grammage and electrolyte content on electrical and dielectric properties of coated papers. Nord. Pulp Pap. Res. J. 25, 319–327 (2010). https://doi.org/10.3183/npprj-2010-25-03-p319-327
Murphy, E.J.: The dependence of the conductivity of cellulose, silk and wool on their water content. J. Phys. Chem. Solids 16, 115–122 (1960). https://doi.org/10.1016/0022-3697(60)90081-0
Nilsson, M., Strømme, M.: Electrodynamic investigations of conduction processes in humid microcrystalline cellulose tablets. J. Phys. Chem. B 109, 5450–5455 (2005). https://doi.org/10.1021/jp046991a
Christie, J.H., Sylvander, S.R., Woodhead, I.M., Irie, K.: The dielectric properties of humid cellulose. J. Non-Cryst. Solids 341, 115–123 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.05.014
Simula, S., et al.: Measurement of the dielectric properties of paper. J. Imaging Sci. Technol. 43, 472–477 (1999)
Kohman, G.T.: Cellulose as an insulating material. Ind. Eng. Chem. 31, 807–817 (1939). https://doi.org/10.1021/ie50355a005
Fahmy, T.Y.A., Mobarak, F., El-Meligy, M.G.: Introducing undeinked old newsprint as a new resource of electrical purposes paper. Wood Sci. Technol. 42, 691–698 (2008). https://doi.org/10.1007/s00226-008-0180-y
Martins, R., et al.: Write-erase and read paper memory transistor. Appl. Phys. Lett. 93, 203501 (2008). https://doi.org/10.1063/1.3030873
Lim, H., Jafry, A.T., Lee, J.: Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 24, 2869 (2019)
Dang-Vu, T., Hupka, J.: Characterization of porous materials by capillary rise method. Physicochem. Probl. Miner. Process. 39, 47–65 (2005)
Munson, B.R., Okiishi, T.H., Huebsch, W.W., Rothmayer, A.P.: Fluid Mechanics. Wiley, Singapore (2013)
Washburn, E.W.: The Dynamics Of Capillary Flow. Phys. Rev. 17, 273–283 (1921). https://doi.org/10.1103/PhysRev.17.273
Oliver, J.F.: Wetting and penetration of paper surfaces. Colloids Surf. Reprographic Technol. ACS Symp. Ser. 200, 435–453 (1982). https://doi.org/10.1021/bk-1982-0200.ch022
Leelajariyakul, S., Noguchi, H., Kiatkamjornwong, S.: Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog. Org. Coat. 62, 145–161 (2008). https://doi.org/10.1016/j.porgcoat.2007.10.005
Hong, S., Kim, W.: Dynamics of water imbibition through paper channels with wax boundaries. Microfluid. Nanofluid. 19, 845–853 (2015). https://doi.org/10.1007/s10404-015-1611-3
Kiesvaara, J., Yliruusi, J.: The use of the Washburn method in determining the contact angles of lactose powder. Int. J. Pharm. 92, 81–88 (1993). https://doi.org/10.1016/0378-5173(93)90266-I
Fries, N., Dreyer, M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320, 259–263 (2008). https://doi.org/10.1016/j.jcis.2008.01.009
Carrilho, E., Martinez, A.W., Whitesides, G.M.: Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009). https://doi.org/10.1021/ac901071p
Lu, Y., Shi, W., Jiang, L., Qin, J., Lin, B.: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30, 1497–1500 (2009). https://doi.org/10.1002/elps.200800563
Dungchai, W., Chailapakul, O., Henry, C.S.: A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136, 77–82 (2011). https://doi.org/10.1039/c0an00406e
Wang, S., et al.: Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212–218 (2012). https://doi.org/10.1016/j.bios.2011.10.019
He, Y., Wu, W.-B., Fu, J.-Z.: Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv. 5, 2694–2701 (2015). https://doi.org/10.1039/C4RA12165A
Nargang, T.M., et al.: Photolithographic structuring of soft, extremely foldable and autoclavable hydrophobic barriers in paper. Anal. Methods 10, 4028–4035 (2018). https://doi.org/10.1039/c8ay01010b
Strong, E.B., et al.: Wax-printed fluidic time delays for automating multi-step assays in paper-based microfluidic devices (MicroPADs. Inventions 4, 20 (2019). https://doi.org/10.3390/inventions4010020
Liu, Z., Hu, J., Zhao, Y., Qu, Z., Xu, F.: Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl. Therm. Eng. 88, 280–287 (2015). https://doi.org/10.1016/j.applthermaleng.2014.09.057
Camplisson, C.K., Schilling, K.M., Pedrotti, W.L., Stone, H.A., Martinez, A.W.: Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip 15, 4461–4466 (2015). https://doi.org/10.1039/C5LC01115A
Castro, C., Rosillo, C., Tsutsui, H.: Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic channels. Microfluid. Nanofluid. 21, 21 (2017). https://doi.org/10.1007/s10404-017-1860-4
Fries, N., Odic, K., Conrath, M., Dreyer, M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321, 118–129 (2008). https://doi.org/10.1016/j.jcis.2008.01.019
Jang, I., Kim, G., Song, S.: Mathematical model for mixing in a paper-based channel and applications to the generation of a concentration gradient. Int. J. Heat Mass Transf. 120, 830–837 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.078
Irimia, D., Geba, D.A., Toner, M.: Universal microfluidic gradient generator. Anal. Chem. 78, 3472–3477 (2006). https://doi.org/10.1021/ac0518710
Berthier, E., Beebe, D.J.: Gradient generation platforms: New directions for an established microfluidic technology. Lab Chip 14, 3241–3247 (2014). https://doi.org/10.1039/C4LC00448E
Philip, J.R.: Flow in porous media. Ann. Rev. Fluid Mech. 2, 177–204 (1970). https://doi.org/10.1146/annurev.fl.02.010170.001141
Darcy, H.P.G.: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. In: Dalamont, V. (ed.) Les Fontaines publiques de la ville de Dijon. Paris (1856)
Fu, E., Ramsey, S.A., Kauffman, P., Lutz, B., Yager, P.: Transport in two-dimensional paper networks. Microfluid. Nanofluid. 10, 29–35 (2011). https://doi.org/10.1007/s10404-010-0643-y
Elizalde, E., Urteaga, R., Berli, C.L.A.: Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15, 2173–2180 (2015). https://doi.org/10.1039/C4LC01487A
Mendez, S., et al.: Imbibition in porous membranes of complex shape: Quasi-stationary flow in thin rectangular segments. Langmuir 26, 1380–1385 (2010). https://doi.org/10.1021/la902470b
Lyklema, J.: Fundamentals of Interface and Colloid Science. Soft Colloids, vol. 5. Elsevier, Cambridge, UK (2005)
Kirby, B.J.: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, New York, NY (2010)
Bruus, H.: Theoretical Microfluidics, vol. 18. Oxford University Press, Oxford, UK (2008)
Sritharan, D., Smela, E.: Fabrication of a miniature paper-based electroosmotic actuator. Polymers 8, 400 (2016). https://doi.org/10.3390/polym8110400
Rosenfeld, T., Bercovici, M.: 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip 14, 4465–4474 (2014). https://doi.org/10.1039/C4LC00734D
Niu, J.-C., et al.: Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis. Anal. Bioanal. Chem. 410, 1689–1695 (2018). https://doi.org/10.1007/s00216-017-0809-5
Yu, S., et al.: Isoelectric focusing on microfluidic paper-based chips. Anal. Bioanal. Chem. 411, 5415–5422 (2019). https://doi.org/10.1007/s00216-019-02008-5
Hong, S., Kwak, R., Kim, W.: Paper-based flow fractionation system applicable to preconcentration and field-flow separation. Anal. Chem. 88, 1682–1687 (2016). https://doi.org/10.1021/acs.analchem.5b03682
Lippmann, G.: Relations entre les phénomènes électriques et capillaires. Gauthier-Villars, Paris, France (1875)
Orejon, D., Sefiane, K., Shanahan, M.E.R.: Young-Lippmann equation revisited for nano-suspensions. Appl. Phys. Lett. 102, 201601 (2013). https://doi.org/10.1063/1.4807120
Ko, H., et al.: Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Adv. Mater. 26, 2335–2340 (2014). https://doi.org/10.1002/adma.201305014
Fobel, R., Kirby, A.E., Ng, A.H.C., Farnood, R.R., Wheeler, A.R.: Paper microfluidics goes digital. Adv. Mater. 26, 2838–2843 (2014). https://doi.org/10.1002/adma.201305168
Fobel, R., Fobel, C., Wheeler, A.R.: DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102, 193513 (2013). https://doi.org/10.1063/1.4807118
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Jafry, A.T., Lim, H., Lee, J. (2021). Basic Paper-Based Microfluidics/Electronics Theory. In: Lee, J.H. (eds) Paper-Based Medical Diagnostic Devices. Bioanalysis, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-8723-8_2
Download citation
DOI: https://doi.org/10.1007/978-981-15-8723-8_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-8722-1
Online ISBN: 978-981-15-8723-8
eBook Packages: EngineeringEngineering (R0)