Skip to main content

Semantic Segmentation Datasets for Resource Constrained Training

Part of the Communications in Computer and Information Science book series (CCIS,volume 1249)

Abstract

Several large scale datasets, coupled with advances in deep neural network architectures have been greatly successful in pushing the boundaries of performance in semantic segmentation in recent years. However, the scale and magnitude of such datasets prohibits ubiquitous use and widespread adoption of such models, especially in settings with serious hardware and software resource constraints. Through this work, we propose two simple variants of the recently proposed IDD dataset, namely IDD-mini and IDD-lite, for scene understanding in unstructured environments. Our main objective is to enable research and benchmarking in training segmentation models. We believe that this will enable quick prototyping useful in applications like optimum parameter and architecture search, and encourage deployment on low resource hardware such as Raspberry Pi. We show qualitatively and quantitatively that with only 1 h of training on 4 GB GPU memory, we can achieve satisfactory semantic segmentation performance on the proposed datasets.

Keywords

  • Semantic segmentation
  • Neural architecture search

A. Mishra, S. Kumar and T. Kalluri—Equal contribution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-8697-2_42
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-8697-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    https://idd.insaan.iiit.ac.in/.

References

  1. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2009)

    CrossRef  Google Scholar 

  2. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  3. Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: Advances in Neural Information Processing Systems, pp. 8713–8724 (2018)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    CrossRef  Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  7. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  10. Liu, C., et al.: Auto-deeplab: hierarchical neural architecture search for semantic image segmentation. arXiv preprint arXiv:1901.02985 (2019)

  11. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436 (2017)

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  13. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

  14. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2018)

    CrossRef  Google Scholar 

  15. Vallurupalli, N., Annamaneni, S., Varma, G., Jawahar, C., Mathew, M., Nagori, S.: Efficient semantic segmentation using gradual grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 598–606 (2018)

    Google Scholar 

  16. Varma, G., Subramanian, A., Namboodiri, A., Chandraker, M., Jawahar, C.: IDD: a dataset for exploring problems of autonomous navigation in unconstrained environments. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE (2019)

    Google Scholar 

  17. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  18. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017)

    Google Scholar 

  19. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  20. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Mishra, A. et al. (2020). Semantic Segmentation Datasets for Resource Constrained Training. In: Babu, R.V., Prasanna, M., Namboodiri, V.P. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2019. Communications in Computer and Information Science, vol 1249. Springer, Singapore. https://doi.org/10.1007/978-981-15-8697-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8697-2_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8696-5

  • Online ISBN: 978-981-15-8697-2

  • eBook Packages: Computer ScienceComputer Science (R0)