Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We used a combined technique of the ice film nanocapacitor and matrix isolation to experimentally study the behavior of isolated molecules and molecular clusters under the influence of external electrostatic fields. The field-driven changes were recorded by means of reflection–absorption infrared spectroscopy. All experiments were conducted in an ultrahigh vacuum chamber equipped with devices for thin film preparation and spectroscopic detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Block PA, Bohac EJ, Miller RE (1992) Spectroscopy of pendular states: the use of molecular complexes in achieving orientation. Phys Rev Lett 68:1303–1306

    Article  ADS  Google Scholar 

  2. Nauta K, Moore DT, Miller RE (1999) Molecular orientation in superfluid liquid helium droplets: high resolution infrared spectroscopy as a probe of solvent-solute interactions. Faraday Discuss. 113:261–278

    Article  ADS  Google Scholar 

  3. Nauta K, Miller RE (1999) Nonequilibrium self-assembly of long chains of polar molecules in superfluid helium. Science 283:1895–1897

    Article  ADS  Google Scholar 

  4. Toennies JP, Vilesov AF (2004) Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. Angew Chem Int Ed 43:2622–2648

    Article  Google Scholar 

  5. Choi M, Dong F, Miller R (2004) Multiple tautomers of cytosine identified and characterized by infrared laser spectroscopy in helium nanodroplets: probing structure using vibrational transition moment angles. Philos Trans Royal Soc A 363:393–413

    Article  ADS  Google Scholar 

  6. Choi MY, Douberly GE, Falconer TM, Lewis WK, Lindsay CM, Merritt JM, Stiles PL, Miller RE (2006) Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry. Int Rev Phys Chem 25:15–75

    Article  Google Scholar 

  7. Choi MY, Miller RE (2006) Infrared laser spectroscopy of imidazole complexes in helium nanodroplets: monomer, dimer, and binary water complexes. J Phys Chem A 110:9344–9351

    Article  Google Scholar 

  8. Andrews SS, Boxer SG (2000) Vibrational stark effects of nitriles I. Methods and experimental results. J Phys Chem A 104:11853–11863

    Google Scholar 

  9. Andrews SS, Boxer SG (2002) Vibrational stark effects of nitriles II. Physical origins of stark effects from experiment and perturbation models. J Phys Chem A 106:469–477

    Google Scholar 

  10. Saggu M, Levinson NM, Boxer SG (2011) Direct measurements of electric fields in weak OH···π hydrogen bonds. J Am Chem Soc 133:17414–17419

    Article  Google Scholar 

  11. Saggu M, Levinson NM, Boxer SG (2012) Experimental quantification of electrostatics in X-H···π hydrogen bonds. J Am Chem Soc 134:18986–18997

    Article  Google Scholar 

  12. Fried SD, Boxer SG (2015) Measuring electric fields and noncovalent interactions using the vibrational stark effect. Acc Chem Res 48:998–1006

    Article  Google Scholar 

  13. Shin S, Kim Y, Moon E-S, Lee DH, Kang H, Kang H (2013) Generation of strong electric fields in an ice film capacitor. J Chem Phys 139:074201

    Article  ADS  Google Scholar 

  14. Shin S, Kim Y, Kang H, Kang H (2015) Effect of electric field on condensed-phase molecular systems. I. Dipolar polarization of amorphous solid acetone. J Phys Chem C 119:15588–15595

    Google Scholar 

  15. Shin S, Kang H, Cho D, Lee JY, Kang H (2015) Effect of electric field on condensed-phase molecular systems. II. Stark effect on the hydroxyl stretch vibration of ice. J Phys Chem C 119:15596–15603

    Google Scholar 

  16. Shin S, Park Y, Kang H, Kang H (2017) Electric field effect on condensed-phase molecular systems. IV. Conformational change of 1,2-dichloroethane in a frozen molecular solid. J Phys Chem C 121:25342–25346

    Google Scholar 

  17. Shin S, Park Y, Kang H, Kang H (2018) Electric field effect on condensed-phase molecular systems: V. Acid–base proton transfer at the interface of molecular films. J Phys Chem C 122:4901–4907

    Google Scholar 

  18. Park Y, Kang H, Kang H (2017) Brute force orientation of matrix-isolated molecules: reversible reorientation of formaldehyde in an argon matrix toward perfect alignment. Angew Chem Int Ed 56:1046–1049

    Article  Google Scholar 

  19. Kang H, Park Y, Kim ZH, Kang H (2018) Electric field effect on condensed-phase molecular systems. VI. Field-driven orientation of hydrogen chloride in an argon matrix. J Phys Chem A 122:2871–2876

    Google Scholar 

  20. Park Y, Lim JH, Lee JY, Kang H (2019) Electric field effect on condensed-phase molecular systems. VII. Vibrational stark sensitivity of spatially oriented water molecules in an argon matrix. J Phys Chem C 123:9868–9874

    Google Scholar 

  21. Park Y, Kang H, Field RW, Kang H (2019) The frequency-domain IR spectrum of ammonia encodes changes in molecular dynamics caused by a DC electric field. Proc Natl Acad Sci USA 116:23444–23447

    Article  Google Scholar 

  22. Whittle E, Dows DA, Pimentel GC (1943) Matrix isolation method for the experimental study of unstable species. J Chem Phys 1954:22

    Google Scholar 

  23. Hallam HE (1973) Vibrational spectroscopy of trapped species. Wiley, Hoboken

    Google Scholar 

  24. Marcoux J (1970) Dielectric constants and indices of refraction of Xe, Kr, and Ar. Can J Phys 48:244–245

    Article  ADS  Google Scholar 

  25. Tsekouras AA, Iedema MJ, Cowin JP (1998) Amorphous water-ice relaxations measured with soft-landed ions. Phys Rev Lett 80:5798–5801

    Article  ADS  Google Scholar 

  26. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486–1493

    Article  Google Scholar 

  27. Böttcher CJF (1973) Theory of electric polarization. Elsevier, Amsterdam

    Google Scholar 

  28. Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. Wiley, Hoboken, pp 277–301

    Book  Google Scholar 

  29. Golden WG, Saperstein DD, Severson MW, Overend J (1984) Infrared reflection-absorption spectroscopy of surface species: a comparison of fourier transform and dispersion methods. J Phys Chem 88:574–580

    Article  Google Scholar 

  30. Rost JM, Griffin JC, Friedrich B, Herschbach DR (1992) Pendular states and spectra of oriented linear molecules. Phys Rev Lett 68:1299–1302

    Article  ADS  Google Scholar 

  31. Maergoiz A, Troe J (1993) Weak- and strong-field stark energy levels of symmetric top dipolar molecules. J Chem Phys 99:3218–3223

    Article  ADS  Google Scholar 

  32. Kanya R, Ohshima Y (2004) Pendular-limit representation of energy levels and spectra of symmetric- and asymmetric-top molecules. Phys Rev A 70:013403

    Article  ADS  Google Scholar 

  33. Härtelt M, Friedrich B (2008) Directional states of symmetric-top molecules produced by combined static and radiative electric fields. J Chem Phys 128:224313

    Article  ADS  Google Scholar 

  34. Moore DT, Oudejans L, Miller R (1999) Pendular state spectroscopy of an asymmetric top: parallel and perpendicular bands of acetylene-HF. J Chem Phys 110:197–208

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, Y. (2020). Method. In: Manipulation of Matrix-Isolated Molecules and Molecular Clusters with Electrostatic Fields. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-8693-4_2

Download citation

Publish with us

Policies and ethics