Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 128 Accesses

Abstract

Manipulation of molecules with controllable external forces is a dream of chemists. The molecular manipulation includes the control of rotation, vibration, and translation of molecules as well as quantum states, dynamics, and reactivity. Molecules are inherently quantum-mechanical systems, control of which potentially can lead to quantum technology, such as quantum memory and quantum computing. External forces which can be utilized to manipulate molecular states include electrostatic fields, magnetic fields, and electromagnetic optical fields. Among these, electrostatic manipulation of molecules and molecular clusters is the focus of this dissertation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herschbach D (2006) Chemical stereodynamics: retrospect and prospect. Eur Phys J D 38:3–13

    Article  ADS  Google Scholar 

  2. Shaik S, de Visser SP, Kumar D (2004) External electric field will control the selectivity of enzymatic-like bond activations. J Am Chem Soc 126:11746–11749

    Article  Google Scholar 

  3. Meir R, Chen H, Lai W, Shaik S (2010) Oriented electric fields accelerate diels-alder reactions and control the endo/exo selectivity. Chem Phys Chem 11:301–310

    Article  Google Scholar 

  4. Gorin CF, Beh ES, Kanan MW (2011) An electric field-induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement. J Am Chem Soc 134:186–189

    Article  Google Scholar 

  5. Gorin CF, Beh ES, Bui QM, Dick GR, Kanan MW (2013) Interfacial electric field effects on a carbene reaction catalyzed by Rh porphyrins. J Am Chem Soc 135:11257–11265

    Article  Google Scholar 

  6. Shaik S, Mandal D, Ramanan R (2016) Oriented electric fields as future smart reagents in chemistry. Nat Chem 8:1091–1098

    Article  Google Scholar 

  7. Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML (2016) Electrostatic catalysis of a diels-alder reaction. Nature 531:88–91

    Article  ADS  Google Scholar 

  8. Akamatsu M, Sakai N, Matile S (2017) Electric-field-assisted anion π catalysis. J Am Chem Soc 139:6558–6561

    Article  Google Scholar 

  9. Shaik S, Ramanan R, Danovich D, Mandal D (2018) Structure and reactivity/selectivity control by oriented-external electric fields. Chem Soc Rev 47:5125–5145

    Article  Google Scholar 

  10. Sussman BJ, Townsend D, Ivanov MY, Stolow A (2006) Dynamic stark control of photochemical processes. Science 314:278–281

    Article  ADS  Google Scholar 

  11. Corrales M, González-Vázquez J, Balerdi G, Solá I, De Nalda R, Bañares L (2014) Control of ultrafast molecular photodissociation by laser-field-induced potentials. Nat Chem 6:785–790

    Article  Google Scholar 

  12. Havenith MH (2002) Infrared spectroscopy of molecular clusters: an introduction to intermolecular forces. Springer, Berlin

    Google Scholar 

  13. Stone A (2013) The theory of intermolecular forces. Oxford University Press, Oxford

    Book  Google Scholar 

  14. Shin S, Kim Y, Moon E-S, Lee DH, Kang H, Kang H (2013) Generation of strong electric fields in an ice film capacitor. J Chem Phys 139:074201

    Article  ADS  Google Scholar 

  15. Park Y, Kang H, Kang H (2017) Brute force orientation of matrix-isolated molecules: reversible reorientation of formaldehyde in an argon matrix toward perfect alignment. Angew Chem Int Ed 56:1046–1049

    Article  Google Scholar 

  16. Kang H, Park Y, Kim ZH, Kang H (2018) Electric field effect on condensed-phase molecular systems. VI. field-driven orientation of hydrogen chloride in an argon matrix. J Phys Chem A 122:2871–2876

    Google Scholar 

  17. Park Y, Lim JH, Lee JY, Kang H (2019) Electric field effect on condensed-phase molecular systems. VII. Vibrational stark sensitivity of spatially oriented water molecules in an argon matrix. J Phys Chem C 123:9868–9874

    Google Scholar 

  18. Park Y, Kang H, Field RW, Kang H (2019) The frequency-domain IR spectrum of ammonia encodes changes in molecular dynamics caused by a DC electric field. Proc Natl Acad Sci USA 116:23444–23447

    Article  Google Scholar 

  19. Wrede E (1927) Über die Ablenkung von Molekularstrahlen Elektrischer Dipolmoleküle im Inhomogenen Elektrischen Feld. Z Phys 44:261–268

    Article  ADS  Google Scholar 

  20. Gordon JP, Zeiger HJ, Townes CH (1955) The maser—new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev 99:1264–1274

    Article  ADS  Google Scholar 

  21. Filsinger F, Küpper J, Meijer G, Hansen JL, Maurer J, Nielsen JH, Holmegaard L, Stapelfeldt H (2009) Pure samples of individual conformers: the separation of stereoisomers of complex molecules using electric fields. Angew Chem Int Ed 48:6900–6902

    Article  Google Scholar 

  22. Bethlem HL, Berden G, Meijer G (1999) Decelerating neutral dipolar molecules. Phys Rev Lett 83:1558–1561

    Article  ADS  Google Scholar 

  23. Bethlem HL, Berden G, Crompvoets FM, Jongma RT, Van Roij AJ, Meijer G (2000) Electrostatic trapping of ammonia molecules. Nature 406:491–494

    Article  ADS  Google Scholar 

  24. Meek SA, Conrad H, Meijer G (2009) Trapping molecules on a chip. Science 324:1699–1702

    Article  ADS  Google Scholar 

  25. Stapelfeldt H, Sakai H, Constant E, Corkum PB (1997) Deflection of neutral molecules using the nonresonant dipole force. Phys Rev Lett 79:2787–2790

    Article  ADS  Google Scholar 

  26. Purcell S, Barker P (2010) Controlling the optical dipole force for molecules with field-induced alignment. Phys Rev A 82:033433

    Article  ADS  Google Scholar 

  27. Zhao BS, Chung HS, Cho K, Lee SH, Hwang S, Yu J, Ahn Y, Sohn J, Kim D, Kang WK (2000) Molecular lens of the nonresonant dipole force. Phys Rev Lett 85:2705–2708

    Article  ADS  Google Scholar 

  28. Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S (2005) Production of ultracold trapped molecular hydrogen ions. Phys Rev Lett 95:183002

    Article  ADS  Google Scholar 

  29. Ostendorf A, Zhang CB, Wilson M, Offenberg D, Roth B, Schiller S (2006) Sympathetic cooling of complex molecular ions to Millikelvin temperatures. Phys Rev Lett 97:243005

    Article  ADS  Google Scholar 

  30. Wolk AB, Leavitt CM, Garand E, Johnson MA (2013) Cryogenic ion chemistry and spectroscopy. Acc Chem Res 47:202–210

    Article  Google Scholar 

  31. Weinstein JD, Guillet T, Friedrich B, Doyle JM (1998) Magnetic trapping of calcium monohydride molecules at Millikelvin temperatures. Nature 395:148–150

    Article  ADS  Google Scholar 

  32. Kirste M, Sartakov BG, Schnell M, Meijer G (2009) Nonadiabatic Transitions in Electrostatically Trapped Ammonia Molecules. Phys Rev A 79:051401

    Article  ADS  Google Scholar 

  33. Heiner CE, Carty D, Meijer G, Bethlem HL (2007) A molecular synchrotron. Nat Phys 3:115–118

    Article  Google Scholar 

  34. Friedrich B, Herschbach D (1995) Alignment and trapping of molecules in intense laser fields. Phys Rev Lett 74:4623–4626

    Article  ADS  Google Scholar 

  35. Takekoshi T, Patterson B, Knize R (1998) observation of optically trapped cold cesium molecules. Phys Rev Lett 81:5105–5108

    Article  ADS  Google Scholar 

  36. Danzl JG, Mark MJ, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson JM, Nägerl H-C (2010) An ultracold high-density sample of Rovibronic ground-state molecules in an optical lattice. Nat Phys 6:265–270

    Article  Google Scholar 

  37. Parker DH, Bernstein RB (1989) Oriented molecule beams via the electrostatic hexapole: preparation, characterization, and reactive scattering. Ann Rev Phys Chem 40:561–595

    Article  ADS  Google Scholar 

  38. Cho VA, Bernstein RB (1991) Tight focusing of beams of polar polyatomic molecules via the electrostatic hexapole lens. J Phys Chem 95:8129–8136

    Article  Google Scholar 

  39. Brooks PR (1995) Orientation effects in electron transfer collisions. Int Rev Phys Chem 14:327–354

    Article  Google Scholar 

  40. Friedrich B, Herschbach D (1999a) Manipulating molecules via combined static and laser fields. J Phys Chem A 103:10280–10288

    Article  Google Scholar 

  41. Friedrich B, Herschbach D (1999b) Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces. J Chem Phys 111:6157–6160

    Article  ADS  Google Scholar 

  42. Härtelt M, Friedrich B (2008) Directional states of symmetric-top molecules produced by combined static and radiative electric fields. J Chem Phys 128:224313

    Article  ADS  Google Scholar 

  43. Rosca-Pruna F, Vrakking M (2001) Experimental observation of revival structures in picosecond laser-induced alignment of I2. Phys Rev Lett 87:153902

    Article  ADS  Google Scholar 

  44. Lee KF, Legare F, Villeneuve D, Corkum P (2006) Measured field-free alignment of deuterium by few-cycle pulses. J Phys B 39:4081–4086

    Article  ADS  Google Scholar 

  45. Lemeshko M, Krems RV, Doyle JM, Kais S (2013) Manipulation of molecules with electromagnetic fields. Mol Phys 111:1648–1682

    Article  ADS  Google Scholar 

  46. Friedrich B, Herschbach DR (1991a) Spatial orientation of molecules in strong electric fields and evidence for pendular states. Nature 353:412–414

    Article  ADS  Google Scholar 

  47. Friedrich B, Herschbach DR (1991b) On the possibility of orienting rotationally cooled polar molecules in an electric field. Z Phys D 18:153–161

    Article  ADS  Google Scholar 

  48. Friedrich B, Pullman DP, Herschbach DR (1991) Alignment and orientation of rotationally cool molecules. J Phys Chem 95:8118–8129

    Article  Google Scholar 

  49. Rost JM, Griffin JC, Friedrich B, Herschbach DR (1992) Pendular states and spectra of oriented linear molecules. Phys Rev Lett 68:1299–1302

    Article  ADS  Google Scholar 

  50. Block PA, Bohac EJ, Miller RE (1992) Spectroscopy of pendular states: the use of molecular complexes in achieving orientation. Phys Rev Lett 68:1303–1306

    Article  ADS  Google Scholar 

  51. Wei Q, Kais S, Friedrich B, Herschbach D (2011) Entanglement of polar symmetric top molecules as candidate qubits. J Chem Phys 135:154102

    Article  ADS  Google Scholar 

  52. Moore DT, Oudejans L, Miller R (1999) Pendular state spectroscopy of an asymmetric top: parallel and perpendicular bands of acetylene-HF. J Chem Phys 110:197–208

    Article  ADS  Google Scholar 

  53. Li H, Franks KJ, Hanson RJ, Kong W (1998) Brute force orientation and alignment of pyridazine probed by resonantly enhanced multiphoton ionization. J Phys Chem A 102:8084–8090

    Article  Google Scholar 

  54. Kong W, Bulthuis J (2000) Orientation of asymmetric top molecules in a uniform electric field: calculations for species without symmetry axes. J Phys Chem A 104:1055–1063

    Article  Google Scholar 

  55. Loesch HJ, Remscheid A (1990) Brute force in molecular reaction dynamics: a novel technique for measuring steric effects. J Chem Phys 93:4779–4790

    Article  ADS  Google Scholar 

  56. Loesch HJ (1995) Orientation and alignment in reactive beam collisions: recent progress. Ann Rev Phys Chem 46:555–594

    Article  ADS  Google Scholar 

  57. Loesch HJ, Möller J (1998) Reactive scattering from brute force oriented molecules: K+ IR→ KI+ R (R= i–C3H7 and t-C4H9). J Phys Chem A 102:9410–9419

    Article  Google Scholar 

  58. Bemish RJ, Chan MC, Miller RE (1996) Molecular control using dc electric fields: quenching of the tunneling in HF dimer. Chem Phys Lett 251:182–188

    Article  ADS  Google Scholar 

  59. Nauta K, Moore DT, Miller RE (1999) Molecular orientation in superfluid liquid helium droplets: high resolution infrared spectroscopy as a probe of solvent-solute interactions. Faraday Discuss 113:261–278

    Article  ADS  Google Scholar 

  60. Dong F, Miller R (2002) Vibrational transition moment angles in isolated biomolecules: a structural tool. Science 298:1227–1230

    Article  ADS  Google Scholar 

  61. Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128:7320–7328

    Article  Google Scholar 

  62. Andrews SS, Boxer SG (2000) Vibrational stark effects of nitriles I. methods and experimental results. J Phys Chem A 104:11853–11863

    Google Scholar 

  63. Andrews SS, Boxer SG (2002) Vibrational stark effects of nitriles II. physical origins of stark effects from experiment and perturbation models. J Phys Chem A 106:469–477

    Google Scholar 

  64. Park ES, Boxer SG (2002) Origins of the sensitivity of molecular vibrations to electric fields: carbonyl and nitrosyl stretches in model compounds and proteins. J Phys Chem B 106:5800–5806

    Article  Google Scholar 

  65. Suydam IT, Snow CD, Pande VS, Boxer SG (2006) Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science 313:200–204

    Article  ADS  Google Scholar 

  66. Fried SD, Bagchi S, Boxer SG (2014) Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346:1510–1514

    Article  ADS  Google Scholar 

  67. Fried SD, Boxer SG (2015) Measuring electric fields and noncovalent interactions using the vibrational stark effect. Acc. Chem. Res. 48:998–1006

    Article  Google Scholar 

  68. Shin S, Kim Y, Kang H, Kang H (2015) Effect of electric field on condensed-phase molecular systems. I. dipolar polarization of amorphous solid acetone. J Phys Chem C 119:15588–15595

    Google Scholar 

  69. Shin S, Kang H, Cho D, Lee JY, Kang H (2015). Effect of electric field on condensed-phase molecular systems. II. Stark effect on the hydroxyl stretch vibration of ice. J Phys Chem C 119:15596–15603

    Google Scholar 

  70. Shin S, Park Y, Kang H, Kang H (2017) Electric field effect on condensed-phase molecular systems. IV. Conformational change of 1, 2-dichloroethane in a frozen molecular solid. J Phys Chem C 121:25342–25346

    Google Scholar 

  71. Shin S, Park Y, Kang H, Kang H (2018) Electric field effect on condensed-phase molecular systems: V. acid–base proton transfer at the interface of molecular films. J Phys Chem C 122:4901–4907

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, Y. (2020). Introduction. In: Manipulation of Matrix-Isolated Molecules and Molecular Clusters with Electrostatic Fields. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-8693-4_1

Download citation

Publish with us

Policies and ethics