Skip to main content

Sliding Mode Control based Tracking of Non-Differentiable Reference Functions

  • Chapter
  • First Online:
Emerging Trends in Sliding Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 318))

Abstract

This chapter gives an insight into the class of tracking problems in nonlinear systems for which the first-order derivative of the reference function does not exist. Using classical sliding mode control, only a restricted class of reference functions can be tracked. A solution to this problem by using fractional-order operators is proposed. The technique works provided the reference function satisfies the Hölder condition. Notably, its application to a switch-controlled RL circuit is demonstrated and some of the possible applications have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall (1991)

    Google Scholar 

  2. Haimo, V.: Finite time controllers. SIAM J. Control. Optim. 24(4), 760–770 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bhatt, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  4. Moulay, E., Perruquetti, W.: Finite time stability conditions for non-autonomous continuous systems. Int. J. Control. 81(5), 797–803 (2008)

    Article  MathSciNet  Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. Academic Press (1999)

    Google Scholar 

  6. Bandyopadhyay, B., Kamal, S.: Stabilization and control of fractional order systems: a sliding mode approach. In: Lecture Notes in Electrical Engineering, vol. 317. Springer (2014)

    Google Scholar 

  7. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach Science Publishers, London, New York (1993)

    Google Scholar 

  8. Aoki, Y.: On a tracking problem for linear systems. J. Math. Anal. Appl. 38(2), 365–371 (1972)

    Article  MathSciNet  Google Scholar 

  9. Slotine, J.-J.E.: The robust control of robot manipulators. Int. J. Robot. Res. 4(2), 49–64 (1985)

    Google Scholar 

  10. Arteaga, M.A., Siciliano, B.: On tracking control of flexible robot arms. IEEE Trans. Autom. Control. 45(3), 520–527 (2000)

    Google Scholar 

  11. Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)

    Google Scholar 

  12. Su, J., Cai, K.-Y.: Globally stabilizing proportional-integral-derivative control laws for rigid-body attitude tracking. J. Guid. Control. Dyn.34(4), 1260–1264 (2011)

    Google Scholar 

  13. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49, 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  14. Bazaei, A., Moheimani, S.O.R., Sebastian, A.: An analysis of signal transformation approach to triangular waveform tracking. Automatica 47, 838–847 (2011)

    Article  MathSciNet  Google Scholar 

  15. Sakthivel, R., Mohanapriya, S., Ahn, C.K., Karimi, H.R.: Output tracking control for fractional-order positive switched systems with input time delay. IEEE Trans. Circuits Syst. II Express Briefs 66(6), 1013–1017 (2019)

    Article  Google Scholar 

  16. Ross, B., Samko, S.G., Love, E.R.: Functions that have no first order derivative might have fractional derivatives of all orders less than one. R. Anal. Exch. 20(1), 140–157 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press (1998)

    Google Scholar 

  18. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014)

    Google Scholar 

  19. Kamal, S., Moreno, J.A., Chalanga, A., Bandyopadhyay, B., Fridman, L.: Continuous terminal sliding-mode controller. Automatica 69, 308–314 (2016)

    Google Scholar 

  20. Thomas, M., Kamal, S., Bandyopadhyay, B., Vachhani, L.: Continuous higher order sliding mode control for a class of MIMO nonlinear systems: An ISS approach. Eur. J. Control. 81, 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mishra, J.P., Yu, X., Jalili, M.: Arbitrary-order continuous finite-time sliding mode controller for fixed-time convergence. IEEE Trans. Circuits Syst. II Express Briefs 65(12), 1988–1992 (2018)

    Google Scholar 

  22. Pal, A.K., Kamal, S., Nagar, S.K., Bandyopadhyay, B., Fridman, L.: Design of controllers with arbitrary convergence time. Automatica 112, 108710 (2020)

    Google Scholar 

  23. Goyal, J.K., Kamal, S., Patel, R.B., Yu, X., Mishra, J.P., Ghosh, S.: Higher order sliding mode control-based finite-time constrained stabilization. IEEE Trans. Circuits Syst. II Express Briefs 67(2), 295–299 (2020)

    Google Scholar 

  24. Soni, S., Kamal, S., Yu, X., Ghosh, S.: Global stabilization of uncertain SISO dynamical systems using a multiple delayed partial state feedback sliding mode control. IEEE Trans. Circuits Syst. II Express Briefs 67(7), 1259–1263 (2019)

    Google Scholar 

  25. Xiong, X., Kikuwue, R., Kamal, S., Jin, S.: Implicit-Euler implementation of super-twisting observer and twisting controller for second-order systems. IEEE Trans. Circuits Syst. II Express Briefs (2019). https://doi.org/10.1109/TCSII.2019.2957271

  26. Cheng, J., Yi, J., Zhao, D.: Design of a sliding mode controller for trajectory tracking problem of marine vessels. IET Control. Theory Appl. 1(1), 233–237 (2007)

    Article  MathSciNet  Google Scholar 

  27. Chen, Y., Petras, I., Xue, D.: Fractional order control—a tutorial. In: American Control Conference, St. Louis, MO, USA, 1397–1411 (2009)

    Google Scholar 

  28. Li, C., Dang, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Podlubny, I.: Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation (2001). arXiv preprint math/0110241

    Google Scholar 

  30. Kamal, S., Yu, X., Sharma, R.K., Mishra, J., Ghosh, S.: Non-differentiable function tracking. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1835–1839 (2019)

    Article  Google Scholar 

  31. Kamal, S., Sharma, R.K., Dinh, T.N., Bandyopadhyay, B., Harikrishnan, M.S.: Sliding mode control of uncertain fractional-order systems: a reaching phase free approach. Asian J. Control. (2019). https://doi.org/10.1002/asjc.2223

  32. Baleanu, D., Güven, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2010)

    Google Scholar 

  33. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order differential systems. Comput. Math. Appl. 64(10), 3117–3140 (2012)

    Article  MathSciNet  Google Scholar 

  34. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  Google Scholar 

  35. Chalanga, A., Kamal, S., Bandyopadhyay, B.: A new algorithm for continuous sliding mode control with implementation to industrial emulator setup. IEEE/ASME Trans. Mechatron. 20(5), 2194–2204 (2015)

    Google Scholar 

  36. Li, C.P., Zhao, Z.G.: Introduction to fractional integrability and differentiability. Eur. Phys. J. Spec. Top. 193, 5–26 (2011)

    Article  Google Scholar 

  37. Krishna, M.S., Das, S., Biswas, K., Goswami, B.: Fabrication of a fractional order capacitor with desired specifications: a study on process identification and characterization. IEEE Trans. Electron Devices 58(11), 4067–4073 (2011)

    Google Scholar 

  38. Radwan, A.G., Salama, K.N.: Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31(6), 1901–1915 (2012)

    Article  MathSciNet  Google Scholar 

  39. Kaczorek, T., Rogowski, K.: Fractional linear systems and electrical circuits. In: Studies in Systems, Decision and Control, vol. 13. Springer (2015)

    Google Scholar 

  40. Podlubny, I.: Fractional-order systems and \(PI^{\lambda }D^{\mu }\)-controllers. IEEE Trans. Autom. Control. 44(1), 208–214 (1999)

    Google Scholar 

  41. Khalil, H.K.: Nonlinear Systems. Prentice Hall (2002)

    Google Scholar 

  42. Sene, N.: Fractional input stability and its application to neural network. Discret. Contin. Dyn. Syst. Ser. S 13 (2020)

    Google Scholar 

  43. Gennaro, D.S.: Output attitude tracking for flexible spacecraft. Automatica 38(6), 600–605 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Habibullah, H., Pota, H.R., Peterson, I.R., Rana, M.S.: Tracking of triangular reference signals using LQG controllers for lateral positioning of an AFM scanner stage. IEEE/ASME Trans. Mechatron. 19(4), 1105–1114 (2014)

    Google Scholar 

  45. Nandal, A., Rosales, H.G., Dhaka, A.,  Padilla, J.M.C.,  Tejada, J.I.G.,  Tejada, C.E.G.,  Ruiz, F.J.M.,  Valdivia, C.G.: Image edge detection using fractional calculus with feature and contrast enhancement. Ciircuit Syst. Signal Process. 37, 3946–3972 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamal, S., Sharma, R.K. (2021). Sliding Mode Control based Tracking of Non-Differentiable Reference Functions. In: Mehta, A., Bandyopadhyay, B. (eds) Emerging Trends in Sliding Mode Control. Studies in Systems, Decision and Control, vol 318. Springer, Singapore. https://doi.org/10.1007/978-981-15-8613-2_3

Download citation

Publish with us

Policies and ethics