Skip to main content

Robust Stabilization of a Class of Underactuated Mechanical Systems of 2 DOF via Continuous Higher-Order Sliding-Modes

  • Chapter
  • First Online:
Emerging Trends in Sliding Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 318))

  • 651 Accesses

Abstract

In this chapter we design robust controllers for a Class of underactuated mechanical systems of two DOF, using a continuous Higher Order Sliding-Mode strategy. Two kinds of controller designs are presented: One generates a fifth-order sliding-mode and achieves Local Finite-Time Stability (LFTS). The other one is a robust controller that provides Global Asymptotic Stability (GAS). These controllers compensate matched Lipschitz disturbances and/or uncertainties, cope with an uncertain control coefficient and generate a continuous control signal, possibly reducing the chattering effect. We provide evidence of the performance of the controllers using simulations for the Reaction Wheel Pendulum (RWP) and the Translational Oscillator with Rotational Actuator (TORA) systems, and by means of experiments on the RWP system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, J.A., Ortega, R., Astolfi, A., Mahindrakar, A.D.: Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Autom. Control 50(12), 1936–1955 (2005). https://doi.org/10.1109/TAC.2005.860292

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous aproximation, recursive observer design and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  Google Scholar 

  3. Andrievsky, B.: Global stabilization of the unstable reaction-wheel pendulum. Autom. Remote Control 72(9), 1981–1993 (2011)

    Article  Google Scholar 

  4. Aström, K., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36, 287–295 (2000)

    Article  MathSciNet  Google Scholar 

  5. Baccioti, A., Rosier, L.: Lyapunov Functions and Stability in Control Theory, 2nd ed. Springer, New York (2005)

    Google Scholar 

  6. Bacciotti, A., Rosier, L.: Liapunov functions and stability in control theory. In: Communications and Control Engineering. Springer, Berlin (2001)

    Google Scholar 

  7. Chalanga, A., Kamal, S., Bandyopadhyay, B.: Continuous integral sliding mode control: a chattering free approach. In: IEEE International Symposium on Industrial Electronics. Taipei, Taiwan (2013)

    Google Scholar 

  8. Chung, C., Hauser, J.: Nonlinear control of a swinging pendulum. Automatica 31(6), 851–862 (1995)

    Article  MathSciNet  Google Scholar 

  9. Cruz-Zavala, E., Moreno, J.: Homogeneous high order sliding mode design: a Lyapunov approach. Automatica 80, 232–238 (2017)

    Article  MathSciNet  Google Scholar 

  10. Din, S.U., Khan, Q., Rehman, F., Akmeliawanti, R.: A comparative experimental study of robust sliding mode control strategies for underactuated systems. IEEE Access 5, 10068–10080 (2017). https://doi.org/10.1109/ACCESS.2017.2712261

    Article  Google Scholar 

  11. Din, S.U., Rehman, F.U., Khan, Q.: Smooth super-twisting sliding mode control for the class of underactuated systems. PloS one 13(10), e0203,667–e0203,667 (2018). https://doi.org/10.1371/journal.pone.0203667. https://pubmed.ncbi.nlm.nih.gov/30281586

  12. Edwards, C., Shtessel, Y.: Adaptive continuous higher order sliding mode control. Automatica 65, 183–190 (2016)

    Article  MathSciNet  Google Scholar 

  13. Grizzle, J.W., Moog, C.H., Chevallereau, C.: Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Autom. Control 50(5), 559–576 (2005). https://doi.org/10.1109/TAC.2005.847057

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, Y.L.: A direct adaptive control scheme for underactuated dynamic systems. In: IEEE Conference on Decision and Control. Texas, USA (1993)

    Google Scholar 

  15. Gutiérrez-Oribio, D., Mercado-Uribe, A., Moreno, J., Fridman, L.: Stabilization of the reaction wheel pendulum via a their order discontinuous integral sliding mode algorithm. In: 16th International Workshop on Variable Structure Systems. Graz, Austria (2018)

    Google Scholar 

  16. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  17. Iriarte, R., Aguilar, L., Fridman, L.: Second order sliding mode tracking controller for inertia wheel pendulum. J. Franklin Inst. 350, 92–106 (2013)

    Article  MathSciNet  Google Scholar 

  18. Jankovic, M., Fontaine, D., Kokotovic, P.: TORA example: cascade and passivity-based control designs. IEEE Trans. Control Syst. Technol. 4(3), 292–297 (1996)

    Article  Google Scholar 

  19. Khalil, H.: Nonlinear Systems. Prentice Hall, New Jersey, USA (2002)

    MATH  Google Scholar 

  20. Khan, Q., Akmeliawati, R., Bhatti, A.I., Khan, M.A.: Robust stabilization of underactuated nonlinear systems: a fast terminal sliding mode approach. ISA Trans. 66, 241–248 (2017). https://doi.org/10.1016/j.isatra.2016.10.017. http://www.sciencedirect.com/science/article/pii/S0019057816305961

  21. Laghrouche, S., Harmouche, M., Chitour, Y.: Higher order super-twisting for perturbed chains of integrators. IEEE Trans. Autom. Control 62(7), 3588–3593 (2017)

    Google Scholar 

  22. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58, 1247–1263 (1993)

    Article  MathSciNet  Google Scholar 

  23. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  Google Scholar 

  24. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)

    Article  MathSciNet  Google Scholar 

  25. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Li, S., Moog, C., Respondek, W.: Maximal feedback linearization and its internal dynamics with applications to mechanical systems on \(\mathbb{R}^4\). Int. J. Robust Nonlinear Control 29, 2639–2659 (2019)

    Article  Google Scholar 

  27. Liu, Y., Yu, H.: A survey of underactuated mechanical systems. IET Control Theory Appl. 7(7), 921–935 (2013). https://doi.org/10.1049/iet-cta.2012.0505

    Article  MathSciNet  Google Scholar 

  28. Lu, B., Fang, Y., Sun, N.: Continuous sliding mode control strategy for a class of nonlinear underactuated systems. IEEE Trans. Autom. Control 63(10), 3471–3478 (2018). https://doi.org/10.1109/TAC.2018.2794885

    Article  MathSciNet  MATH  Google Scholar 

  29. Marino, R.: On the largest feedback linearizable subsystem. Syst. Control Lett. 6(5), 345–351 (1986). https://doi.org/10.1016/0167-6911(86)90130-1. http://www.sciencedirect.com/science/article/pii/0167691186901301

  30. Mendoza-Ávila, J., Moreno, J., Fridman, L.: An idea for Lyapunov function design for arbitrary order continuous twisting algorithm. In: IEEE 56th Annual Conference on Decision and Control. Melbourne, Australia (2017)

    Google Scholar 

  31. Mendoza-Avila, J., Moreno, J.A., Fridman, L.: Continuous twisting algorithm for third order systems. IEEE Trans. Autom. Control 1–1 (2019). https://doi.org/10.1109/TAC.2019.2932690

  32. Mercado-Uribe, A., Moreno, J.: Full and partial state discontinuous integral control. IFAC-PapersOnLine 51(13), 573–578 (2018). https://doi.org/10.1016/j.ifacol.2018.07.341. http://www.sciencedirect.com/science/article/pii/S2405896318310966. In: 2nd IFAC Conference on Modelling, Identification and Control of Nonlinear Systems MICNON (2018)

  33. Moreno, J.: Discontinuous integral control for mechanical systems. In: International Workshop on Variable Structure Systems. Nanjing, China (2016)

    Google Scholar 

  34. Moreno, J.: Discontinuous integral control for systems with relative degree two (Chapter 8). In: Clempner, J., Yu, W. (eds.) New Perspectives and Applications of Modern Control Theory; in Honor of Alexander S. Poznyak. Springer International Publishing (2018)

    Google Scholar 

  35. Olfati-Saber, R.: Control of underactuated mechanical systems with two degrees of freedom and symmetry. In: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), vol. 6, pp. 4092–4096 (2000). https://doi.org/10.1109/ACC.2000.876991

  36. Olfati-Saber, R.: Global stabilization of a flat underactuated system: the inertia wheel pendulum. In: 40th IEEE Conference on Decision and Control. Florida, USA (2001)

    Google Scholar 

  37. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Massachusetts Institute of Technology, USA (2001)

    Google Scholar 

  38. Olfati-Saber, R.: Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Autom. Control 47(2), 305–308 (2002). https://doi.org/10.1109/9.983365

    Article  MathSciNet  MATH  Google Scholar 

  39. Perez-Ventura, U., Fridman, L.: When it is reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones? Frequency domain criteria. Int. J. Robust Nonlinear Control 29(3), 810–828 (2019)

    Article  Google Scholar 

  40. Reyhanoglu, M., Cho, S., McClamroch, N., Kolmanovsky, I.: Discontinuous feedback control of a planar rigid body with an unactuated internal degree of freedom. In: IEEE Conference on Decision and Control. Florida, USA (1998)

    Google Scholar 

  41. Riachy, S., Orlov, Y., Floquet, T., Santiesteban, R., Richard, J.P.: Second-order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum. Int. J. Robust Nonlinear Control 18(4–5), 529–543 (2008). https://doi.org/10.1002/rnc.1200. https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.1200

  42. Seeber, R., Horn, M.: Stability proof for a well-established super-twisting parameter setting. Automatica 84, 241–243 (2017)

    Article  MathSciNet  Google Scholar 

  43. Seeber, R., Horn, M.: Necessary and sufficient stability criterion for the super-twisting algorithm. In: 15th International Workshop on Variable Structure Systems (VSS). Graz, Austria (2018)

    Google Scholar 

  44. Spong, M.: The swing up control problem for the acrobot. IEEE Control Syst. Mag. 15(1), 49–55 (1995)

    Article  Google Scholar 

  45. Spong, M.: Energy based control of a class of underactuated mechanical systems. In: 13th IFAC World Congress. San Francisco, USA (1996)

    Google Scholar 

  46. Spong, M., Block, D.: The Pendubot: a mechatronic system for control research and education. In: 34th IEEE Conference on Decision and Control. New Orleans, USA (1995)

    Google Scholar 

  47. Spong, M., Corke, P., Lozano, R.: Nonlinear control of the reaction wheel pendulum. Automatica 37, 1845–1851 (2001)

    Article  Google Scholar 

  48. Spong, M., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York, USA (1989)

    Google Scholar 

  49. Spong, M.W.: Partial feedback linearization of underactuated mechanical systems. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94), vol. 1, pp. 314–321 (1994)

    Google Scholar 

  50. Spong, M.W.: Swing up control of the Acrobot. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2356–2361 (1994)

    Google Scholar 

  51. Su, C.Y., Stepanenko, Y.: Sliding mode control of nonholonomic systems: underactuated manipulator case. In: IFAC Nonlinear Control Systems Design. California, USA (1995)

    Google Scholar 

  52. Teel, A.: Using saturation to stabilize a class of single-input partially linear composite systems. IFAC Proc. 25(13), 379–384 (1992)

    Article  Google Scholar 

  53. Teel, A., Praly, L.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33(5), 1443–1488 (1995)

    Google Scholar 

  54. Thomas, M., Kamal, S., Bandyopadhyay, B., Vachhani, L.: Continuous higher order sliding mode control for a class of uncertain MIMO nonlinear systems: an ISS approach. Eur. J. Control 41, 1–7 (2018). https://doi.org/10.1016/j.ejcon.2018.01.005. http://www.sciencedirect.com/science/article/pii/S0947358017300778

  55. Torres-González, V., Fridman, L., Moreno, J.: Continuous twisting algorithm. In: IEEE 54th Annual Conference on Decision and Control. Osaka, Japan (2015)

    Google Scholar 

  56. Torres-González, V., Sánchez, T., Fridman, L., Moreno, J.: Design of continuous twisting algorithm. Automatica 80, 119–126 (2017)

    Google Scholar 

  57. Viola, G., Ortega, R., Banavar, R., Acosta, J.A., Astolfi, A.: Total energy shaping control of mechanical systems: simplifying the matching equations via coordinate changes. IEEE Trans. Autom. Control 52(6), 1093–1099 (2007). https://doi.org/10.1109/TAC.2007.899064

  58. Xu, R., Özgüner, Ü.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008). https://doi.org/10.1016/j.automatica.2007.05.014. http://www.sciencedirect.com/science/article/pii/S0005109807002713

Download references

Acknowledgements

The authors thank the financial support of CONACyT (Consejo Nacional de Ciencia y Tecnología): Project 282013, CVU’s 624679 and 705765; PAPIIT-UNAM (Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica) IN115419 and IN110719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Gutiérrez-Oribio .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Homogeneity

Let vector \(x \in \mathbb {R}^n\), its dilation operator is defined \(\varDelta _\epsilon ^\mathbf{r }: = (\epsilon ^{r_1} x_1, \ldots , \epsilon ^{r_n} x_n)\), \(\forall \epsilon > 0\), where \(r_i > 0\) are the weights of the coordinates and \(\mathbf{r} \) is the vector of weights. A function \(V: \mathbb {R}^n \rightarrow \mathbb {R}\) (respectively, a vector field \(f: \mathbb {R}^n \rightarrow \mathbb {R}^n\), or vector-set \(F(x) \subset \mathbb {R}^n\)) is called \(\mathbf{r} \)-homogeneous of degree \(m \in \mathbb {R}\) if the identity \(V(\varDelta _\epsilon ^\mathbf{r }) = \epsilon ^{m}V(x)\) holds (or \(f(\varDelta _\epsilon ^\mathbf{r } x) = \epsilon ^{m} \varDelta _\epsilon ^\mathbf{r } f(x)\), \(F(\varDelta _\epsilon ^\mathbf{r } x) = \epsilon ^{m} \varDelta _\epsilon ^\mathbf{r } F(x)\)) [5, 33].

Suppose that the vector \(\mathbf{r} \) is fixed. The homogeneous norm is defined by \(\left| \left| x \right| \right| _\mathbf{r , p} := \Big (\sum _{i = 1}^{n} \left| x_i \right| ^{\frac{p}{r_i}} \Big )^{\frac{1}{p}}\), \(\forall x \in \mathbb {R}^n\), for any \(p \ge 1\) and the set \(S = \{x \in \mathbb {R}^n: \left| \left| x \right| \right| _\mathbf{r ,p} = 1\}\) is the homogeneous unit sphere [5].

1.1 Some Properties of Homogeneous Functions

Consider \(V_1\) and \(V_2\) two \(\mathbf{r} \)-homogeneous functions (respectively, a vector field \(f_1\)) of degree \(m_1\), \(m_2\) (and \(l_1\)), then: (i) \(V_1 V_2\) is homogeneous of degree \(m_1 + m_2\), (ii) there exist a constant \(c_1 > 0\), such that \(V_1 \le c_1 \left| \left| x \right| \right| _\mathbf{r ,p}^{m_1}\), moreover, if \(V_1\) is positive definite, there exists \(c_2\) such that \(V_1 \ge c_2 \left| \left| x \right| \right| _\mathbf{r , p}^{m_1}\), (iii) \(\partial V_1(x)/ \partial x_i\) is homogeneous of degree \(m_1 - r_i\), (iv) \(L_f V_1(x)\) is homogeneous of degree \(m_1 + l_1\) [5].

The following result is well known for continuous homogeneous functions (see [16, Theorem 4.4] or [2, 33]), and can be extended to semi-continuous functions [9].

Lemma 1

Let \(\eta : \mathbb {R}^n \rightarrow \mathbb {R}\) and \(\gamma : \mathbb {R}^n \rightarrow \mathbb {R}\) be two \(\mathbf{r} \)-homogeneous and upper semi-continuous single-valued functions, with the same weights \(\mathbf{r} = (r_1, \ldots , r_n)\) and homogeneity degree \(m>0\). Suppose that \(\gamma (x) \le 0\) in \(\mathbb {R}^n\). If

$$\begin{aligned} \{x \in \mathbb {R}^n \setminus \{0\}: \gamma (x) = 0 \} \subseteq \{x \in \mathbb {R}^n \setminus \{0\}: \eta (x) < 0 \}, \end{aligned}$$

then there exists a real number \(\lambda ^*\) and a constant \(c > 0\) so that, for all \(\lambda \ge \lambda ^*\) and for all \(x \in \mathbb {R}^n \setminus \{0\}\) the following inequality is satisfied:

$$\eta (x) + \lambda \gamma (x) \le -c \left| \left| x \right| \right| _\mathbf{r , p}^m.$$

The following Lemma is simple (just monotonicity) but useful

Lemma 2

Consider the real variables x, y, it is always true that

$$\text {sign} \big (\left\lceil x + y \right\rfloor ^\beta - \left\lceil y \right\rfloor ^\beta \big ) = \text {sign}(x), \quad \beta > 0.$$

Appendix 2: Proof of Theorem 1

Using the back-stepping-like procedure to obtain the state-feedback controller and its Lyapunov Function used in [9], and introducing an additional term and a modification, we obtain the following homogeneous candidate Lyapunov function of degree m (with \(m \ge 9\) to render it differentiable)

$$\begin{aligned} \begin{aligned} V_4&= \gamma _3V_3 + \frac{2}{m} \left| z_4 \right| ^{\frac{m}{2}} + k_3^{\frac{m - 2}{2}} \left\lceil \left\lceil z_3 \right\rfloor ^{\frac{5}{3}} + k_2^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{m - 2}{5}} z_4 + \\&\quad \,\,\left( 1 - \frac{2}{m} \right) k_3^{\frac{m}{2}} \left| \left\lceil z_3 \right\rfloor ^{\frac{5}{3}} + k_2^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \xi _1 \right| ^{\frac{m}{5}} + \frac{1}{m} \left| z_5 \right| ^{m}, \end{aligned} \end{aligned}$$

where \(\gamma _1,\gamma _2,\gamma _3>0\) are arbitrary and

$$\begin{aligned} \xi _1&= z_1 - k_{\xi } \left\lceil z_5 \right\rfloor ^{5}, \quad \dot{\xi }_1 = \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5, \quad k_\xi = k_4^{-5} k_{3}^{-\frac{5}{2}} k_{2}^{-\frac{5}{3}} k_{1}^{-\frac{5}{4}}\,, \\ \end{aligned}$$
$$\begin{aligned} V_3&= \gamma _2 V_2 + \frac{3}{m} \left| z_3 \right| ^{\frac{m}{3}} + k_2^{\frac{m - 3}{3}} \left\lceil \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{m - 3}{5}} z_3 + \left( 1 - \frac{3}{m} \right) k_2^{\frac{m}{3}} \left| \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right| ^{\frac{m}{5}},\\ \end{aligned}$$
$$\begin{aligned} V_2&= \frac{5}{m} \gamma _1 \left| \xi _1 \right| ^{\frac{m}{5}} + \frac{4}{m} \left| z_2 \right| ^{\frac{m}{4}} + k_1^{\frac{m - 4}{4}} \left\lceil \xi _1 \right\rfloor ^{\frac{m - 4}{5}} z_2 + \left( 1 - \frac{4}{m} \right) k_1^{\frac{m}{4}} \left| \xi _1 \right| ^{\frac{m}{5}}\,. \end{aligned}$$

Using Young’s inequality, it is possible to show that the function \(V_4\) is positive definite. Its derivative along the trajectories of (22) is given by

$$\begin{aligned} \begin{aligned} \dot{V}_4&= \gamma _3 \left[ \gamma _2 F_{k_{2,3}} + F_{k_{3,4}} \right] + \beta (t,\,z)k_4 G_{k_4} + F_{k_4} + \left\lceil z_5 \right\rfloor ^{m - 1} \dot{z}_5, \end{aligned} \end{aligned}$$
(37)

where

$$\begin{aligned} \begin{aligned} G_{k_4}&= - \left[ \left\lceil z_4 \right\rfloor ^{\frac{m-2}{2}} + k_3^{\frac{m - 2}{2}} \left\lceil \left\lceil z_3 \right\rfloor ^{\frac{5}{3}} + k_2^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{m - 2}{5}} \right] \times \\&\quad \,\,\Bigg [- k_4^{-1} z_{5} + \left\lceil \left\lceil z_4 \right\rfloor ^{\frac{5}{2}} + k_{3}^{\frac{5}{2}} \left\lceil z_{3} \right\rfloor ^{\frac{5}{3}} + k_{3}^{\frac{5}{2}} k_{2}^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_{3}^{\frac{5}{2}} k_{2}^{\frac{5}{3}} k_{1}^{\frac{5}{4}} \xi _1 + k_4^{-5} \left\lceil z_5 \right\rfloor ^5 \right\rfloor ^{\frac{1}{5}} \Bigg ],\\ \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} F_{k_4}&= \left( \frac{m - 2}{5} \right) k_3^{\frac{m - 2}{2}} \left| \left\lceil z_3 \right\rfloor ^{\frac{5}{3}} + k_2^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \xi _1 \right| ^{\frac{m - 7}{5}} \times \\&\quad \,\, \left[ \frac{5}{3} \left| z_3 \right| ^{\frac{2}{3}} z_4 + \frac{5}{4} k_2^{\frac{5}{3}} \alpha _2 \left| z_2 \right| ^{\frac{1}{4}} z_3 + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \left[ \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5 \right] \right] \times \\&\quad \,\, \left[ z_4 + k_3 \left\lceil \left\lceil z_3 \right\rfloor ^{\frac{5}{3}} + k_2^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{2}{5}} \right] ,\\ \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} F_{k_{3,4}}&= \left[ \left\lceil z_3 \right\rfloor ^{\frac{m - 3}{3}} + k_2^{\frac{m - 3}{3}} \left\lceil \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{m - 3}{5}} \right] z_4 + \left( \frac{m - 3}{5} \right) k_2^{\frac{m - 3}{3}} \left| \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right| ^{\frac{m - 8}{5}} \times \\&\quad \,\, \left[ z_3 + k_2 \left\lceil \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{3}{5}} \right] \left[ \frac{5}{4} \alpha _2 \left| z_2 \right| ^{\frac{1}{4}} z_3 + k_1^{\frac{5}{4}} \left[ \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5 \right] \right] ,\\ \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} F_{k_{2,3}}&= \gamma _1 \left\lceil \xi _1 \right\rfloor ^{\frac{m - 5}{5}} \left[ \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5 \right] + \alpha _2 \left[ \left\lceil z_2 \right\rfloor ^{\frac{m - 4}{4}} + k_1^{\frac{m - 4}{4}} \left\lceil \xi _1 \right\rfloor ^{\frac{m - 4}{5}} \right] z_3 \\&\quad + \left( \frac{m - 4}{5} \right) k_1^{\frac{m - 4}{4}} \left| \xi _1 \right| ^{\frac{m - 9}{5}} \left[ z_2 + k_1 \left\lceil \xi _1 \right\rfloor ^{\frac{4}{5}} \right] \left[ \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5 \right] . \end{aligned} \end{aligned}$$

Using Lemma 2 we conclude that the term \(G_{k_4}\) is negative semi-definite and it vanishes only on the set

$$S_1 = \left\{ z_4 = - k_3 \left\lceil \left\lceil z_3 \right\rfloor ^{\frac{5}{3}} + k_2^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{2}{5}} \right\} . $$

Evaluating \(\dot{V}_4\) on this set, and noting that \(\left. F_{k_4} \right| _{S_1}=0\) and \(\left. F_{k_{3,4}} \right| _{S_1}=k_3 G_{k_3} + F_{k_3}\), we obtain

$$\begin{aligned} \left. \dot{V}_4 \right| _{S_1} = \gamma _3 \left[ \gamma _2 F_{k_{2,3}} + k_3 G_{k_3} + F_{k_3} \right] + {z_5}^{m - 1} \left. \dot{z}_5 \right| _{S_{1}} \,, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} G_{k_3}&= - \left[ \left\lceil z_3 \right\rfloor ^{\frac{m - 3}{3}} + k_2^{\frac{m - 3}{3}} \left\lceil \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{m - 3}{5}} \right] \left\lceil \left\lceil z_3 \right\rfloor ^{\frac{5}{3}} + k_2^{\frac{5}{3}} \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_2^{\frac{5}{3}} k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{2}{5}},\\ F_{k_3}&= \left( \frac{m - 3}{5} \right) k_2^{\frac{m - 3}{3}} \left| \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right| ^{\frac{m - 8}{5}} \left[ z_3 + k_2 \left\lceil \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{3}{5}} \right] \times \\&\quad \,\, \left[ \frac{5}{4} \alpha _2 \left| z_2 \right| ^{\frac{1}{4}} z_3 + k_1^{\frac{5}{4}} \left[ \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5|_{S_1} \right] \right] . \end{aligned} \end{aligned}$$

We note that the term \(G_{k_3}\) is negative semi-definite and it is zero only on the set

$$ S_2 = \left\{ z_3 = - k_2 \left\lceil \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{3}{5}} \right\} \,. $$

Evaluating \(\left. \dot{V}_4 \right| _{S_1}\) on this set, and noting that \(\left. F_{k_3} \right| _{S_2}=0\) and \(\left. F_{k_{2,3}} \right| _{S_{2}}=F_{k_2} + k_2 G_{k_2}\), we get

$$\begin{aligned} \left. \dot{V}_4 \right| _{S_{1} \cap S_2} = \gamma _3 \gamma _2 \left[ F_{k_2} + k_2 G_{k_2} \right] + \left\lceil z_5 \right\rfloor ^{m - 1} \left. \dot{z}_5 \right| _{S_{1} \cap S_2}\,, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} G_{k_2}&= - \alpha _2 \left[ \left\lceil z_2 \right\rfloor ^{\frac{m - 4}{4}} + k_1^{\frac{m - 4}{4}} \left\lceil \xi _1 \right\rfloor ^{\frac{m - 4}{5}} \right] \left\lceil \left\lceil z_2 \right\rfloor ^{\frac{5}{4}} + k_1^{\frac{5}{4}} \xi _1 \right\rfloor ^{\frac{3}{5}}, \\ F_{k_2}&= \gamma _1 \left\lceil \xi _1 \right\rfloor ^{\frac{m - 5}{5}} \left[ \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5|_{S_{1} \cap S_2} \right] + \left( \frac{m - 4}{5} \right) k_1^{\frac{m - 4}{4}} \left| \xi _1 \right| ^{\frac{m - 9}{5}} \times \\&\quad \left[ z_2 + k_1 \left\lceil \xi _1 \right\rfloor ^{\frac{4}{5}} \right] \left[ \alpha _1 z_2 - 5 k_{\xi } \left| z_5 \right| ^{4} \dot{z}_5|_{S_{1} \cap S_2} \right] . \end{aligned} \end{aligned}$$

\(G_{k_2}\) is negative semi-definite and it vanishes only on the set

$$ S_3 = \left\{ z_2 = - k_1 \left\lceil \xi _1 \right\rfloor ^{\frac{4}{5}} \right\} \,. $$

Evaluating \(\left. \dot{V}_4 \right| _{S_1 \cap S_2}\) on this set we get

$$\begin{aligned} \begin{aligned} \left. \dot{V}_4 \right| _{S_1 \cap S_2 \cap S_3}&\in \gamma _2 \gamma _3 \left. F_{k_2} \right| _{S_3} + \left. \left\lceil z_5 \right\rfloor ^{m - 1} \dot{z}_5 \right| _{S_{1} \cap S_2 \cap S_3}\\&\in - \alpha _1 k_1 \gamma _3 \gamma _2 \gamma _1 \left| \xi _1 \right| ^{\frac{m - 1}{5}} - k_{I1} \left[ \left\lceil z_5 \right\rfloor ^{m - 1} - \right. 5 k_{\xi } \gamma _3 \gamma _2 \gamma _1 \left. \left\lceil \xi _1 \right\rfloor ^{\frac{m - 5}{5}} \left| z_5 \right| ^{4} \right] \times \\&\left[ \left\lceil \left[ 1 - k_{I2} k_1^{\frac{m}{4}} \right] \xi _1 + k_{\xi } \left\lceil z_5 \right\rfloor ^{5} \right\rfloor ^{0} + \left[ -\bar{L}, \bar{L} \right] \right] . \end{aligned} \end{aligned}$$

Since \(k_1>0\) the first term in the latter expression is non-positive and it is zero only on the set

$$ S_{4} = \left\{ \xi _1 = 0 \right\} \,. $$

Evaluating \(\left. \dot{V}_4 \right| _{S_1 \cap S_2 \cap S_3}\) on this set we get

$$\begin{aligned} \left. \dot{V}_4 \right| _{S_1 \cap S_2 \cap S_3 \cap S_4} \in - k_{I1} \left\lceil z_5 \right\rfloor ^{m - 1} \left[ \left\lceil z_5 \right\rfloor ^{0} + \left[ -\bar{L}, \bar{L} \right] \right] \,. \end{aligned}$$

The latter expression is negative if \(\bar{L} =\frac{L}{k_{I1}} <1\), that is, for

$$\begin{aligned} L < k_{I1}\,, \end{aligned}$$
(38)

since \(\left\lceil z_5 \right\rfloor ^{0}\) is a multivalued function, defined as

$$ \left\lceil z_5 \right\rfloor ^{0} = \left\{ \begin{array}{ll} +1 &{} \text{ if } z_5 > 0\,, \\ \left[ -1,\,+1\right] &{} \text{ if } z_5 = 0\,, \\ -1 &{} \text{ if } z_5 < 0\,. \\ \end{array} \right. $$

Lemma 1 implies that it is possible to render \(\left. \dot{V}_4 \right| _{S_1 \cap S_2 \cap S_3}<0\) selecting \(k_{I1}>0\) small. Applying Lemma 1 once more, we conclude that \(\left. \dot{V}_4 \right| _{S_1 \cap S_2}<0\) selecting \(k_2>0\) sufficiently large. Again, Lemma 1 shows that we can get \(\left. \dot{V}_4 \right| _{S_1}<0\) selecting \(k_3>0\) sufficiently large. Finally, Lemma 1 implies that \(\left. \dot{V}_4 \right| <0\) if \(k_4>0\) is sufficiently large.

Since \(\dot{V}_4\) is negative definite by appropriate selection of the gains (what is always feasible), then the origin of system (22) is asymptotically stable. Moreover, since the system is homogeneous of negative degree, the origin is finite-time stable (see, e.g., [24]). Since (22) is a local homogeneous approximation of system (11), we conclude that it is locally finite-time stable.    \(\square \)

Appendix 3: Gain Selection

From the previous proof we derive conditions for the gains to render \(\dot{V}_4<0\). The following inequalities are obtained for the gain selection:

$$\begin{aligned} k_{I1}^{-1} > \underset{ z\in { \varOmega }_{ 1 } }{ \max } \left\{ \frac{- k_1^{\frac{m}{4}} \gamma _3 \gamma _2 \gamma _1 \left| \xi _1 \right| ^{\frac{m - 1}{5}} }{\left[ \left\lceil z_5 \right\rfloor ^{m - 1} - \right. 5 k_{\xi } \gamma _3 \gamma _2 \gamma _1 \left. \left\lceil \xi _1 \right\rfloor ^{\frac{m - 5}{5}} \left| z_5 \right| ^{4} \right] \dot{ z }_5|_{S_{1} \cap S_2 \cap S_3} } \right\} \,, \end{aligned}$$
(39)
$$\begin{aligned} k_2 > \underset{ z\in { \varOmega }_{ 2 } }{ \max } \left\{ \frac{F_{k_2} + \gamma _3^{-1} \gamma _2^{-1} \left. \left\lceil z_5 \right\rfloor ^{m - 1} \dot{z}_5 \right| _{S_{1} \cap S_2} }{G_{k_2} } \right\} , \end{aligned}$$
(40)
$$\begin{aligned} k_3 > \underset{ z\in { \varOmega }_{ 3 } }{ \max } \left\{ \frac{\gamma _2 F_{k_{2,3}} + F_{k_3} + \gamma _3^{-1} \left. \left\lceil z_5 \right\rfloor ^{m - 1} \dot{z}_5 \right| _{S_1} }{G_{k_3} } \right\} , \end{aligned}$$
(41)
$$\begin{aligned} k_4 > \frac{1}{b_m} \underset{ z\in { \varOmega }_{ 4 } }{ \max } \left\{ \frac{\gamma _3 \left[ \gamma _2 F_{k_{2,3}} + F_{k_{3,4}} \right] + F_{k_4} + \left\lceil z_5 \right\rfloor ^{m - 1} \dot{z}_5 }{G_{k_4} } \right\} , \end{aligned}$$
(42)

where the homogeneous unit spheres \(\varOmega _i\) are given by \(\varOmega _1 = \left\{ \left| \xi _{ 1 } \right| ^{ \frac{1}{5} } + \left| z_{ 5 } \right| = 1 \right\} \), \(\varOmega _2 = \left\{ \left| \xi _{ 1 } \right| ^{ \frac{1}{5} } + \left| z_{ 2 } \right| ^{ \frac{1}{4} } + \left| z_{ 5 } \right| = 1 \right\} \), \(\varOmega _3 = \left\{ \left| \xi _{ 1 } \right| ^{ \frac{1}{5} } + \left| z_{ 2 } \right| ^{ \frac{1}{4} } + \left| z_{ 3 } \right| ^{ \frac{1}{3} } + \left| z_{ 5 } \right| = 1 \right\} \), and \(\varOmega _4 = \left\{ \left| \xi _{ 1 } \right| ^{ \frac{1}{5} } + \left| z_{ 2 } \right| ^{ \frac{1}{4} } + \left| z_{ 3 } \right| ^{ \frac{1}{3} } + \left| z_{ 4 } \right| ^{ \frac{1}{2} } + \left| z_{ 5 } \right| = 1 \right\} \). Functions (39)–(42) are shown to have a maximum value. Since they are homogeneous of degree \(d=0\) the maximum can be found on the homogeneous unit sphere \(\varOmega _ i \).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutiérrez-Oribio, D., Mercado-Uribe, Á., Moreno, J.A., Fridman, L. (2021). Robust Stabilization of a Class of Underactuated Mechanical Systems of 2 DOF via Continuous Higher-Order Sliding-Modes. In: Mehta, A., Bandyopadhyay, B. (eds) Emerging Trends in Sliding Mode Control. Studies in Systems, Decision and Control, vol 318. Springer, Singapore. https://doi.org/10.1007/978-981-15-8613-2_15

Download citation

Publish with us

Policies and ethics