Skip to main content

Accurate Position Regulation of an Electro-Hydraulic Actuator via Uncertainty Compensation-Based Controller

  • Chapter
  • First Online:
Emerging Trends in Sliding Mode Control

Abstract

Electro-hydraulic actuators are complex systems with uncertainties in their parameters and disregarded dynamics due to its complexity. This paper presents a disturbance observer-based controller method for the accurate position regulation of an electro-hydraulic actuator. To this aim, a super-twisting algorithm-based observer identifies the plant uncertainties and neglected dynamics, theoretically, in finite-time. Thus, a compensation based controller is designed to counteract the uncertainty and neglected dynamics effects through feedback, improving the position regulation accuracy. The closed-loop analysis is carried out using Lyapunov theory. The feasibility of the controller is validated through high-fidelity simulations and experiments in a forestry crane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrit, H.E.: Hydraulic Control Systems. Wiley (1967)

    Google Scholar 

  2. Milić, V., Šitum, Ž., Essert, M.: Robust H\(_\infty \) position control synthesis of an electro-hydraulic servo system. ISA Trans. 49(4), 535–542 (2010)

    Article  Google Scholar 

  3. Fallahi, M., Zareinejad, M., Baghestan, K., Tivay, A., Rezaei, S.M., Abdullah, A.: Precise position control of an electro-hydraulic servo system via robust linear approximation. ISA Trans. 80, 503–512 (2018)

    Google Scholar 

  4. Puglisi, L., Saltaren, R., Garcia, C., Banfield, I.: Robustness analysis of a PI controller for a hydraulic actuator. Control Eng. Pract. 43, 94–108 (2015)

    Article  Google Scholar 

  5. Tahoumi, E., Plestan, F., Ghanes, M., Barbot, J.-P.: A controller switching between twisting and linear algorithms for an electropneumatic actuator. In: IEEE European Control Conference, pp. 2368–2373 (2018)

    Google Scholar 

  6. Komsta, J., van Oijen, N., Antoszkiewicz, P.: Integral sliding mode compensator for load pressure control of die-cushion cylinder drive. Control Eng. Pract. 21(5), 708–718 (2013)

    Article  Google Scholar 

  7. Yung, I., Vázquez, C., Freidovich, L.B.: Robust position control design for a cylinder in mobile hydraulics applications. Control Eng. Pract. 69, 36–49 (2017)

    Article  Google Scholar 

  8. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  9. Schmidt, L., Andersen, T.O.: Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics. Elektrotech. Informationstechnik 133(6), 238–247 (2016)

    Google Scholar 

  10. Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5), 759–769 (2012)

    Article  MathSciNet  Google Scholar 

  11. Hernández, D., Bejarano, F.J., Dávila, J., Fridman, L.: On the strong observability in linear time-varying singular systems. Automatica 101, 60–65 (2019)

    Article  MathSciNet  Google Scholar 

  12. Rajendran, S., Spurgeon, S.K., Tsampardoukas, G., Hampson, R.: Estimation of road frictional force and wheel slip for effective antilock braking system (ABS) control. Int. J. Robust Nonlinear Control 29(3), 736–765 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ruderman, M., Fridman, L., Pasolli, P.: Virtual sensing of load forces in hydraulic actuators using second-and higher-order sliding modes. Control Eng. Pract. 92, 104151 (2019)

    Article  Google Scholar 

  14. Mao, J., Yang, J., Li, S., Yan, Y., Li, Q.: Output feedback-based sliding mode control for disturbed motion control systems via a higher-order ESO approach. IET Control Theory Appl. 13(15), 2118–2126 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ríos, H., Falcón, R., González, O., Dzul, A.: Continuous sliding-mode control strategies for quadrotor robust tracking: real-time application. IEEE Trans. Industr. Electron. 62(2), 1264–1272 (2019)

    Article  Google Scholar 

  16. Kumar, P.R., Behera, A.K., Bandyopadhyay, B.: Robust finite-time tracking of stewart platform: a super-twisting like observer-based forward kinematics solution. IEEE Trans. Industr. Electron. 64(5), 3776–3785 (2017)

    Article  Google Scholar 

  17. Ruderman, M., Fridman, L.: Model-free sliding-mode-based detection and estimation of backlash in drives with single encoder. IEEE Trans. Control Syst. Technol. 1–6 (2019)

    Google Scholar 

  18. Koch, S., Reichhartinger, M.: Observer-based sliding mode control of hydraulic cylinders in the presence of unknown load forces. Elektrotech. Informationstechnik 133(6), 253–260 (2016)

    Google Scholar 

  19. Palli, G., Strano, S., Terzo, M.: A novel adaptive-gain technique for high-order sliding-mode observers with application to electro-hydraulic systems. Mech. Syst. Signal Process. 144, 106875 (2020)

    Article  Google Scholar 

  20. Yao, J., Deng, W., Sun, W.: Precision motion control for electro-hydraulic servo systems with noise alleviation: a desired compensation adaptive approach. IEEE/ASME Trans. Mechatron. 22(4), 1859–1868 (2017)

    Article  Google Scholar 

  21. Yang, X., Zheng, X., Chen, Y.: Position tracking control law for an electro-hydraulic servo system based on backstepping and extended differentiator. IEEE/ASME Trans. Mechatron. 23(1), 132–140 (2018)

    Article  Google Scholar 

  22. Khalil, H.K.: Nonlinear Systems. Pearson (2001)

    Google Scholar 

  23. Jelali, M., Kroll, A.: Hydraulic Servo-Systems: Modelling, Identification and Control, 1st edn. Springer, London (2002)

    Google Scholar 

  24. Vázquez, C., Aranovskiy, S., Freidovich, L.B.: Input nonlinearity compensation and chattering reduction in a mobile hydraulic forestry crane. Elektrotech. Informationstechnik 133(6), 248–252 (2016)

    Google Scholar 

  25. Moreno, J., Osorio, M.: Strict Lyapunov function for the Super-Twisting algorithm. IEEE Trans. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  Google Scholar 

  26. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Springer, Dordrecht (1988)

    Book  Google Scholar 

  27. Levant, A., Livne, M.: Weighted homogeneity and robustness of sliding mode control. Automatica 72, 186–193 (2016)

    Article  MathSciNet  Google Scholar 

  28. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning, vol. 2. Instrument Society of America Research Triangle Park, NC (1995)

    Google Scholar 

  29. Aranovskiy, S.: Modeling and identification of spool dynamics in an industrial electro-hydraulic valve. In: Mediterranean Conference on Control and Automation (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Ferreira de Loza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verdés, R.I., Ferreira de Loza, A., Aguilar, L.T., Castillo, I., Freidovich, L. (2021). Accurate Position Regulation of an Electro-Hydraulic Actuator via Uncertainty Compensation-Based Controller. In: Mehta, A., Bandyopadhyay, B. (eds) Emerging Trends in Sliding Mode Control. Studies in Systems, Decision and Control, vol 318. Springer, Singapore. https://doi.org/10.1007/978-981-15-8613-2_12

Download citation

Publish with us

Policies and ethics