Skip to main content

FPGA-Based Implementation of Backstepping Controller for Three-Phase Shunt Active Power Filter Interfacing Solar Photovoltaic System to Distribution Grid

  • Conference paper
  • First Online:
Book cover Recent Advances in Power Electronics and Drives

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 707))

  • 625 Accesses

Abstract

The design and implementation of a controller for a solar photovoltaic system interfacing to the grid with shunt active power filter functionality are discussed in this paper. An inner harmonic current compensation loop and an outer dc voltage control loop constituted the control system. The inner loop is realized using a self-tuning filter (STF) based on instantaneous power theory, and the outer loop is realized using backstepping algorithm. The control algorithm is simulated under dynamic system conditions namely change in solar irradiation and change in load, in Matlab/Simulink environment. To ensure the effectiveness of the controller in mitigating the harmonic currents and interfacing solar PV system with distribution grid for real power exchange, the control algorithm is tested under steady-state and dynamic conditions and validated with the simulation results. The control algorithm is then implemented using a single all on-chip FPGA. Hardware co-simulation is carried out with the control system implemented in FPGA, and shunt active filter power circuit simulated in Matlab/Simulink. The hardware co-simulation results obtained are matching with the Matlab simulation results under dynamic system conditions and the controller design using FPGA is validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Mikkili, A. Padamati, PHC, id-iq and p-q control strategies for mitigation of current harmonics in three-phase three-wire shunt active filter with pi controller. Int. J. Emerg. Electric Power Syst. 18(2), 1–29 (2017). https://doi.org/10.1515/ijeeps-2016-0055

    Article  Google Scholar 

  2. H. Akagi, E. Watanabe, M. Aredes, Shunt Active Filters, chap. 4 (Wiley-Blackwell, 2017), pp. 111–236. https://doi.org/10.1002/9781119307181.ch4

  3. H. Akagi, The state-of-the-art of active filters for power conditioning, in Power Electronics and Applications, 2005 European Conference on (2005), pp. 1–15

    Google Scholar 

  4. F. Nejabatkhah, Y.W. Li, B. Wu, Control strategies of three-phase distributed generation inverters for grid unbalanced voltage compensation. IEEE Trans. Power Electron. 31(7), 5228–5241 (2016). https://doi.org/10.1109/TPEL.2015.2479601

    Article  Google Scholar 

  5. M. Benchouia, I. Ghadbane, A. Golea, K. Srairi, M.E.H. Benbouzid, Implementation of adaptive fuzzy logic and pi controllers to regulate the dc bus voltage of shunt active power filter. Appl. Soft Comput. 28, 125–131 (2015)

    Google Scholar 

  6. Y. Hoon, M.A. Mohd Radzi, M.K. Hassan, N.F. Mailah, A refined self-tuning filter-based instantaneous power theory algorithm for indirect current controlled three-level inverter-based shunt active power filters under non-sinusoidal source voltage conditions. Energies 10, 3 (2017). https://doi.org/10.3390/en10030277

    Article  Google Scholar 

  7. S. Biricik, S. Redif, C. Ozerdem, S.K. Khadem, M. Basu, Real-time control of shunt active power filter under distorted grid voltage and unbalanced load condition using self-tuning filter. IET Power Electron. 7(7), 1895–1905 (2014). https://doi.org/10.1049/iet-pel.2013.0924

    Article  Google Scholar 

  8. S. Mikkili, A.K. Panda, Instantaneous active and reactive power and current strategies for current harmonics cancellation in 3-ph 4wire shaf with both pi and fuzzy controllers. Energy Power Eng. 3(03), 285–298 (2011)

    Article  Google Scholar 

  9. A. Ghamri, T. Mahni, M. Benchouia, K. Srairi, A. Golea, Comparative study between different controllers used in three-phase four-wire shunt active filter. Energy Procedia 74, 807–816 (2015)

    Google Scholar 

  10. R.L.D.A. Ribeiro, T.D.O.A. Rocha, R.M. de Sousa, E.C. dos Santos, A.M.N. Lima, A robust dc-link voltage control strategy to enhance the performance of shunt active power filters without harmonic detection schemes. IEEE Trans. Indus. Electron. 62(2), 803–813 (2015). https://doi.org/10.1109/TIE.2014.2345329

    Article  Google Scholar 

  11. T. Demirdelen, R.I. Kayaalp, M. Tümay, Pso-pi based dc link voltage control technique for shunt hybrid active power filter, in 2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS) (2016), pp. 97–102. https://doi.org/10.1109/SIMS.2016.18

  12. F. Li, Y. Zou, W. Chen, J. Zhang, Comparison of current control techniques for single-phase voltage-source pwm rectifiers, in 2008 IEEE International Conference on Industrial Technology (2008), pp. 1–4 . https://doi.org/10.1109/ICIT.2008.4608485

  13. H. Vahedi, Y.R. Kukandeh, M.G. Kashani, A. Dankoob, A. Sheikholeslami, Comparison of adaptive and fixed-band hysteresis current control considering high frequency harmonics, in 2011 IEEE Applied Power Electronics Colloquium (IAPEC) (2011), pp. 185–188. https://doi.org/10.1109/IAPEC.2011.5779858

  14. Y. Xiaojie, L. Yongdong, A shunt active power filter using dead-beat current control, in IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, vol. 1 (2002), pp. 633–637. https://doi.org/10.1109/IECON.2002.1187581

  15. S. Charles, C. Vivekanandan, An efficient fpga based real-time implementation shunt active power filter for current harmonic elimination and reactive power compensation. J. Electr. Eng. Technol. 4, 4 (2015). https://doi.org/10.5370/JEET.2015.10.4.1655

    Article  Google Scholar 

  16. P. Karuppanan, K.K. Mahapatra, Active harmonic current compensation to enhance power quality. Int. J. Electr. Power Energy Syst. 62, 144–151 (2014). https://doi.org/10.1016/j.ijepes.2014.04.018

  17. M. Salimi, J. Soltani, A. Zakipour, Experimental design of the adaptive backstepping control technique for single-phase shunt active power filters. IET Power Electron. 10(8), 911–918 (2017). https://doi.org/10.1049/iet-pel.2016.0366

    Article  Google Scholar 

  18. A. Mahfouz, S. Zaid, S. Saad, A. Hagras, Sensorless dc voltage control with backstepping design scheme for shunt active power filter. J. Electr. Eng. 15, 303–312 (2015)

    Google Scholar 

  19. IEEE-519, IEEE recommended practice and requirements for harmonic control in electric power systems. IEEE Std 519-2014 (Revision of IEEE Std 519-1992) pp. 1–29 (2014). https://doi.org/10.1109/IEEESTD.2014.6826459

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Jayasankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jayasankar, V.N., Vinatha, U. (2021). FPGA-Based Implementation of Backstepping Controller for Three-Phase Shunt Active Power Filter Interfacing Solar Photovoltaic System to Distribution Grid. In: Kumar, J., Jena, P. (eds) Recent Advances in Power Electronics and Drives. Lecture Notes in Electrical Engineering, vol 707. Springer, Singapore. https://doi.org/10.1007/978-981-15-8586-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8586-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8585-2

  • Online ISBN: 978-981-15-8586-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics