Skip to main content

Interval Optimization Based on Hybrid Optimization Algorithm

  • Chapter
  • First Online:
Nonlinear Interval Optimization for Uncertain Problems

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 471 Accesses

Abstract

By combining the genetic algorithm (GA) with the artificial neural network (ANN), this chapter establish two hybrid optimization algorithms to solve the nested optimization problem after transformation, based on which two efficient nonlinear interval optimization methods are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu GR, Han X (2003) Computational inverse techniques in nondestructive evaluation. CRC Press, Florida

    Book  Google Scholar 

  2. Masi S (1993) Identification of nonlinear dynamic system using neural networks. ASME J Appl Mech 60:123–133

    Article  Google Scholar 

  3. Han X (2001) Elastic waves in functionally graded materials and its applications to material characterization. PhD thesis, National University of Singapore, Singapore

    Google Scholar 

  4. Jiang C (2008) Optimization theory and algorithm based on interval uncertainty. PhD thesis, Hunan University, Changsha

    Google Scholar 

  5. Cao J, Kinsey B, Solla SA (2000) Consistent and minimal springback using a stepped binder force trajectory and neural network control. J Eng Mater Technol 122:113

    Article  Google Scholar 

  6. Ayres RA (1984) SHAPESET: a process to reduce sidewall curl springback in high-strength steel rails. J Appl Metalwork 3(2):127–134

    Article  Google Scholar 

  7. Hishida Y, Wagoner RH (1993) Experimental analysis of blank holding force control in sheet forming. Technical report, SAE Technical Paper, p 930285

    Google Scholar 

  8. Sunseri M, Cao J, Karafillis AP, Boyce MC (1996) Accommodation of springback error in channel forming using active binder force control: numerical simulations and experiments. J Eng Mater Technol 118(3):426–435

    Article  Google Scholar 

  9. Liu G, Lin ZQ, Xu W, Bao Y (2002) Variable blankholder force in U-shaped part forming for eliminating springback error. J Mater Process Technol 120(1–3):259–264

    Article  Google Scholar 

  10. Han X, Jiang C, Li GY, Zhong ZH, Hu DB (2006) An inversion procedure for determination of variable binder force in U-shaped forming. Inverse Probl Sci Eng 14(3):301–312

    Article  Google Scholar 

  11. Papeleux L, Ponthot J-P (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791

    Article  Google Scholar 

  12. Jiang C, Han X, Liu GR, Li GY (2007) The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J Mater Process Technol 182(1–3):262–267

    Article  Google Scholar 

  13. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells-Part II. Two-dimensional shells. Comput Methods Appl Mech Eng 27(2):167–181

    Google Scholar 

  14. Lai XM, Chen GL, Lin ZQ, Luo CY (2000) On fixture design of sheet stamping assembly. Mech Sci Technol Aerosp Eng 19(5):785–787

    Google Scholar 

  15. Jiang C, Han X, Liu GR, Liu GP (2008) A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res 188(1):1–13

    Article  MathSciNet  Google Scholar 

  16. Liu GR, Quek SS (2003) The finite element method: a practical course. Elsevier Science Ltd., England

    MATH  Google Scholar 

  17. Besterfield DH, Besterfiels-Michna C, Besterfield GH, Besterfield-Sacre M (1999) Total quality management. Prentice-Hall Inc, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, C., Han, X., Xie, H. (2021). Interval Optimization Based on Hybrid Optimization Algorithm. In: Nonlinear Interval Optimization for Uncertain Problems. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8546-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8546-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8545-6

  • Online ISBN: 978-981-15-8546-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics