Skip to main content

Mobile Technology Solution for COVID-19: Surveillance and Prevention

Part of the Studies in Computational Intelligence book series (SCI,volume 923)

Abstract

The twenty-first century, a century would be known for profound technological advancements and unfortunately also for a global economic and health crisis due to SARS-CoV2, the causal organism of respiratory syndrome COVID-19. Due to the huge crisis in every sector, ‘Technological or Digital way’ is the brightest hope to fight this pandemic. Analysis of the data obtained from the past few infectious months, the spread is more likely to become a seasonal threat to mankind. As an effort to level up the technology and other associated aspects, various researchers and developers are developing mobile applications and mobile controllable devices to provide quality information which can help in flattening the curve of this pandemic. Practically, it becomes a great method to prevent close contacts with diseased individuals by providing virtual visits and through robotic technologies. In the current chapter, the technological background of computational intelligence-controlled smartphone applications for monitoring an individual’s health and tracking the geographical spread of the virus, along with the research scope and data security concerned with these applications have been discussed. This could help the government to understand the potential risk circumstances towards early exposure and timely medical intervention to prevent it from further spread to other regions.

Keywords

  • Apps
  • Android
  • GPS
  • Data security
  • Geo-tracking
  • Contact tracking
  • Privacy concerns

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-8534-0_5
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-8534-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Standing, S., & Standing, C. (2008). Mobile technology and healthcare: The adoption issues and systemic problems. International Journal of Electronic Healthcare, 4(3–4), 221–235.

    CrossRef  Google Scholar 

  2. Anokwa, Y., Hartung, C., Brunette, W., Borriello, G., & Lerer, A. (2009). Open source data collection in the developing world. Computer, 42(10), 97–99.

    CrossRef  Google Scholar 

  3. Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), 931–934.

    CrossRef  Google Scholar 

  4. World Health Organization. (2020). Protocol for assessment of potential risk factors for coronavirus disease 2019 (COVID-19) among health workers in a health care setting, 23 March 2020 (No. WHO/2019-nCoV/HCW_risk_factors_protocol/2020.3). World Health Organization.

    Google Scholar 

  5. Drew, D. A., Nguyen, L. H., Steves, C. J., Menni, C., Freydin, M., Varsavsky, T., Sudre, C. H., Cardoso, M. J., Ourselin, S., Wolf, J., & Spector, T. D. (2020). Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science.

    Google Scholar 

  6. Tan, W., Zhao, X., Ma, X., Wang, W., Niu, P., Xu, W., et al. (2020). A novel coronavirus genome identified in a cluster of pneumonia cases—Wuhan, China 2019–2020. China CDC Weekly, 2(4), 61–62.

    CrossRef  Google Scholar 

  7. Alam, M. Z., Hoque, M. R., Hu, W., & Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. International Journal of Information Management, 50, 128–143.

    CrossRef  Google Scholar 

  8. Abeler, J., Bäcker, M., Buermeyer, U., & Zillessen, H. (2020). COVID-19 contact tracing and data protection can go together. JMIR mHealth and uHealth, 8(4), e19359.

    CrossRef  Google Scholar 

  9. Roberts, P. R., & ElRefai, M. H. (2020). The use of app-based follow-up of cardiac implantable electronic devices. Cardiac Failure Review, 6.

    Google Scholar 

  10. Ali, M., Wood-Harper, T. W. H., Al-Qahtani, A., & Albakri, A. (2020). Risk assessment framework of mHealth system vulnerabilities: A multilayer analysis of the patient hub. Communications and Networks, 12(2), 41–60.

    CrossRef  Google Scholar 

  11. Li, J., & Guo, X. (2020). COVID-19 contact-tracing apps: A survey on the global deployment and challenges. arXiv preprint arXiv:2005.03599.

  12. Edirisinghe, R., Stranieri, A., & Wickramasinghe, N. (2020). A taxonomy for mHealth. In Virtual and mobile healthcare: Breakthroughs in research and practice (pp. 823–842). IGI Global.

    Google Scholar 

  13. Vanhoef, M., Matte, C., Cunche, M., Cardoso, L. S., & Piessens, F. (2016). Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms. In Proceedings of the 11th ACM on Asia conference on computer and communications security (pp. 413–424).

    Google Scholar 

  14. Imieliński, T., & Navas, J. C. (1999). GPS-based geographic addressing, routing, and resource discovery. Communications of the ACM, 42(4), 86–92.

    CrossRef  Google Scholar 

  15. Byambasuren, O., Beller, E., Hoffmann, T., & Glasziou, P. (2020). mHealth app prescription in Australian general practice: Pre-post study. JMIR mHealth and uHealth, 8(6), e16497.

    CrossRef  Google Scholar 

  16. Ienca, M., & Vayena, E. (2020). On the responsible use of digital data to tackle the COVID-19 pandemic. Nature Medicine, 26(4), 463–464.

    CrossRef  Google Scholar 

  17. Zastrow, M. (2020). Coronavirus contact-tracing apps: Can they slow the spread of COVID-19? Nature.

    Google Scholar 

  18. Milani, R. V., & Lavie, C. J. (2015). Health care 2020: Reengineering health care delivery to combat chronic disease. The American Journal of Medicine, 128(4), 337–343.

    CrossRef  Google Scholar 

  19. Bay, J., Kek, J., Tan, A., Hau, C. S., Yongquan, L., Tan, J., et al. (2020). BlueTrace: A privacy-preserving protocol for community-driven contact tracing across borders. Singapore: Government Technology Agency-Singapore, Tech. Rep.

    Google Scholar 

  20. World Health Organization. (2020). Ethical considerations to guide the use of digital proximity tracking technologies for COVID-19 contact tracing: Interim guidance, 28 May 2020 (No. WHO/2019-nCoV/Ethics_Contact_tracing_apps/2020.1). World Health Organization.

    Google Scholar 

  21. Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg, G., Thompson, H., Walker, P. G., Fu, H., & Dighe, A. (2020). Estimates of the severity of coronavirus disease 2019: A model-based analysis. The Lancet Infectious Diseases.

    Google Scholar 

  22. Walker, P. G., Whittaker, C., Watson, O. J., Baguelin, M., Winskill, P., Hamlet, A., Djafaara, B. A., Cucunubá, Z., Mesa, D. O., Green, W., & Thompson, H. (2020). The impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countries. Science.

    Google Scholar 

  23. Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., Letouzé, E., Salah, A. A., Benjamins, R., Cattuto, C., & Colizza, V. (2020). Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle.

    Google Scholar 

  24. Jonas, S. M., Deserno, T. M., Buhimschi, C. S., Makin, J., Choma, M. A., & Buhimschi, I. A. (2016). Smartphone-based diagnostic for preeclampsia: an mHealth solution for administering the Congo Red Dot (CRD) test in settings with limited resources. Journal of the American Medical Informatics Association, 23(1), 166–173.

    CrossRef  Google Scholar 

  25. Naqvi, G. A., Daly, M., Dawood, A., Kurkuri, A., & Kutty, S. (2014). Smart consultation for musculoskeletal trauma: Accuracy of using smart phones for fracture diagnosis. The Surgeon, 12(1), 32–34.

    CrossRef  Google Scholar 

  26. Yu, P., Wu, M. X., Yu, H., & Xiao, G. Q. (2006). The challenges for the adoption of m-health. In 2006 IEEE International Conference on Service Operations and Logistics, and Informatics (pp. 181–186). IEEE.

    Google Scholar 

  27. Akter, S., & Ray, P. (2010). mHealth-an ultimate platform to serve the unserved. Yearbook of Medical Informatics, 19(01), 94–100.

    CrossRef  Google Scholar 

  28. Miller, A. S., Cafazzo, J. A., & Seto, E. (2016). A game plan: Gamification design principles in mHealth applications for chronic disease management. Health Informatics Journal, 22(2), 184–193.

    CrossRef  Google Scholar 

  29. He, D., Naveed, M., Gunter, C.A., & Nahrstedt, K. (2014). Security concerns in Android mHealth apps. In AMIA Annual Symposium Proceedings (Vol. 2014, p. 645). American Medical Informatics Association.

    Google Scholar 

  30. Cho, H., Ippolito, D., & Yu, Y. W. (2020). Contact tracing mobile apps for COVID-19: Privacy considerations and related trade-offs. arXiv preprint arXiv:2003.11511.

  31. Raza, K. (2020). Artificial intelligence against COVID-19: A meta-analysis of current research. In Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach. Studies in Big Data, 78, 2020. Berlin: Springer (In Press).

    Google Scholar 

  32. Kapoor, A., Guha, S., Das, M. K., Goswami, K. C., & Yadav, R. (2020). Digital healthcare: The only solution for better healthcare during COVID-19 pandemic? Indian Heart Journal.

    Google Scholar 

  33. Jakhar, D. E. E. P. A. K., Kaul, S. U. B. U. H. I., & Kaur, I. S. H. M. E. E. T. (2020). WhatsApp messenger as a teledermatology tool during coronavirus disease (COVID-19): from bedside to phone-side. Clinical and Experimental Dermatology.

    Google Scholar 

  34. Garg, S., Bhatnagar, N., & Gangadharan, N. (2020). A case for participatory disease surveillance of the COVID-19 pandemic in India. JMIR Public Health and Surveillance, 6(2), e18795.

    CrossRef  Google Scholar 

  35. Chan, J., Gollakota, S., Horvitz, E., Jaeger, J., Kakade, S., Kohno, T., Langford, J., Larson, J., Singanamalla, S., Sunshine, J., & Tessaro, S. (2020). Pact: Privacy sensitive protocols and mechanisms for mobile contact tracing. arXiv preprint arXiv:2004.03544.

  36. Ji, Z., Zhang, X., Ganchev, I., & O’Droma, M. (2012). A personalized middleware for ubiquitous mHealth services. In 2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom) (pp. 474–476). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaban Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S. et al. (2021). Mobile Technology Solution for COVID-19: Surveillance and Prevention. In: Raza, K. (eds) Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Studies in Computational Intelligence, vol 923. Springer, Singapore. https://doi.org/10.1007/978-981-15-8534-0_5

Download citation