Skip to main content

Using Computational Intelligence for Tracking COVID-19 Outbreak in Online Social Networks

Part of the Studies in Computational Intelligence book series (SCI,volume 923)

Abstract

The novel coronavirus disease (COVID-19) causes serious respiratory tract infections in humans, and worse leads to mortality in old-aged people or individuals with co-morbidities. Websites and online social platforms generate a gargantuan amount of data in myriad aspects namely—technology, global news, human healthcare, medicine, socio-political domain, etc., aiding to decipher significant knowledge using web mining. Since the outbreak, people from different geographical locations used hashtags about novel coronavirus. The FAMEC model, the Honghou Hybrid System (HHS), the COVID Tracking Project of Twitter are a few examples of computational intelligent online social trackers that have been devised to track the COVID-19 pandemic. Researchers have identified the significance of tweets to be consistent with the CDC and the WHO reports and discerned that mining of such personal tweets was effective to track, manage, and predict the mortality and morbidity rates, identify the geographic location of patients infected which would, in turn, lead to rapid treatment assessment, employment of telemedicine and sanitization of such regions. This chapter presents how computational intelligence along with online social networks can be used for tracking COVID-19 patients.

Keywords

  • Novel Coronavirus 2019 (nCoV-19)
  • Outbreak
  • Web data mining (WDM)
  • Online social network (OSN)
  • Tele-medicine
  • Misinfodemic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-8534-0_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-8534-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

References

  1. Shi, H., Han, X. & Zheng, C. (2020). Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology 200269.

    Google Scholar 

  2. Xu, X., Chen, P., et al. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences, 63, 457–460.

    CrossRef  Google Scholar 

  3. Mourad, A., Srour, A., et al. (2020). Critical impact of social networks infodemic on defeating Coronavirus COVID-19 Pandemic: Twitter-based study and research directions. https://arxiv.org/pdf/2005.08820.pdf.

  4. Raza, K. (2020). Artificial intelligence against COVID-19: A meta-analysis of current research. In Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach. Studies in Big Data, 78, 2020. Berlin: Springer (In Press).

    Google Scholar 

  5. Lau, S. K. P., Lee, P., et al. (2011). Molecular epidemiology of human Coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. Journal of Virology, 85(21), 11325–11337. https://doi.org/10.1128/jvi.05512-11

  6. Qazi, S., Sheikh, K., et al. (2020). A coadunation of biological and mathematical perspectives on the pandemic COVID-19: A review. Preprints, 2020, 2020040007. https://doi.org/10.20944/preprints202004.0007.v1.

    CrossRef  Google Scholar 

  7. Max, R., Hannah, R., et al. (2020). Coronavirus Pandemic (COVID-19). Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/coronavirus.

  8. Qin, L., Sun, Q., et al. (2020). Prediction of number of cases of 2019 Novel Coronavirus (COVID-19) using social media search index. International Journal of Environmental Research and Public Healthcare, 17, 2365. https://doi.org/10.3390/ijerph17072365.

  9. Smith, N. & Fraser, M. (2020). Straining the system: Novel coronavirus (COVID-19) and preparedness for concomitant disasters. American Journal of Public Health e1–e2.

    Google Scholar 

  10. Gostin, L. O., & Hodge, J. G. (2020). US emergency legal responses to novel coronavirus: Balancing public health and civil liberties. JAMA, 323, 1131–1132.

    CrossRef  Google Scholar 

  11. Wang, C., Horby, P. W., et al. (2020). A novel coronavirus outbreak of global health concern. Lancet, 395, 470–473.

    CrossRef  Google Scholar 

  12. Cutillo, L. A., Molva, R., et al. (2009). Safebook: A privacy-preserving online social network leveraging on real-life trust. IEEE Communications Magazine, 47(12).

    Google Scholar 

  13. Chaudhary, P., Gupta, B. B., et al. (2016). XSS detection with automatic view isolation on online social network. In 2016 IEEE 5th Global Conference on Consumer Electronics, Kyoto, 2016, pp. 1–5.

    Google Scholar 

  14. Al-Qurishi, M., Rahman, S. M., et al. (2017). An efficient key agreement protocol for Sybil-precaution in online social networks. Future Generation Computer Systems. http://dx.doi.org/10.1016/j.future.

  15. Gupta, B. B., Sangaiah, A. K., et al. (2018). Recent research in computational intelligence paradigms into security and privacy for online social networks (OSNs). Future Generation Computer Systems, 86, 851–854. https://doi.org/10.1016/j.future.2018.05.017.

    CrossRef  Google Scholar 

  16. Meyers, L. A., Pourbohloul, B., et al. (2005). Network theory and SARS: Predicting outbreak diversity. Journal of Theoretical Biology, 232, 71–81.

    MathSciNet  CrossRef  Google Scholar 

  17. Seo, D. W., & Shin, S. Y. (2017). Methods using social media and search queries to predict infectious disease outbreaks. Healthcare Informatics Research, 23, 343–348.

    CrossRef  Google Scholar 

  18. Alessa, A., & Faezipour, M. (2018). A review of influenza detection and prediction through social networking sites. Theoretical Biology and Medical Modelling, 15, 2.

    CrossRef  Google Scholar 

  19. Seo, D. W., Jo, M. W., et al. (2014). Cumulative query method for influenza surveillance using search engine data. Journal of Medical Internet Research, 16, e289.

    CrossRef  Google Scholar 

  20. Liu, D., Guo, S., et al. (2019). A dengue fever predicting model based on Baidu search index data and climate data in South China. PLoS ONE, 14, e0226841.

    CrossRef  Google Scholar 

  21. Lazer, D., Kennedy, R., et al. (2014). Big data. The parable of Google Flu: Traps in big data analysis. Science, 343, 1203–1205.

    Google Scholar 

  22. Hudedagaddi, D. P. &Tripathy, B. K. (2017). Quantum inspired computational intelligent techniques in image segmentation. Quantum Inspired Computational Intelligence. Research and Applications 233–258.

    Google Scholar 

  23. Manju, A., & Nigam, M. J. (2014). Applications of quantum inspired computational intelligence: A survey. Artificial Intelligence Review, 42(1), 79–156.

    CrossRef  Google Scholar 

  24. Sumathi, S., & Paneerselvam, S. (2010). Computational intelligence paradigms. Boca Raton: CRC Press. https://doi.org/10.1201/9781439809037.

    CrossRef  Google Scholar 

  25. Jahanbin, K., & Rahmanian, V. (2020). Using twitter and web news mining to predict COVID-19 outbreak. Asian Pacific Journal of Tropical Medicine, 13. http://www.apjtm.org/preprintarticle.asp?id=279651.

  26. Chen, E., Lerman, K. & Ferrara, E. (2020). #COVID-19: The first public Coronavirus Twitter Dataset. arXiv:2003.07372v1.

  27. Iglesias, J. A., Tiemblo, A., et al. (2016). Web news mining in an evolving framework. Information Fusion, 28, 90–98.

    Google Scholar 

  28. Jahanbin, K., Rahmanian, F., et al. (2019). Application of Twitter and web news mining in infectious disease surveillance systems and prospects for public health. GMS Hygiene and Infection Control, 2019(14), 1–12.

    Google Scholar 

  29. Chan-Olmsted, S. M., Cho, M., & Lee, S. (2013). User perceptions of social media: A comparative study of perceived characteristics and user profiles by social media. Online Journal of Communication and Media Technologies, 3(4), 149–178. https://doi.org/10.29333/ojcmt/2451.

  30. Tang, J., & Liu, H. (2012). Unsupervised feature selection for linked social media data. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 904–912).

    Google Scholar 

  31. Fan, W., & Gordon, M. D. (2014). The power of social media analytics. Communications of the ACM, 57(6), 74–81.

    CrossRef  Google Scholar 

  32. Arianto, D., & Pui, N., (2020). Social media analysis: Utilization of social media data for research on COVID-19.

    Google Scholar 

  33. Zeng, D., Chen, H., Lusch, R., & Li, S. H. (2010). Social media analytics and intelligence. IEEE Intelligent Systems, 25(6), 13–16.

    CrossRef  Google Scholar 

  34. Gottlieb, M., & Dyer, S. (2020). Information and disinformation: Social media in the COVID-19 Crisis. Academic Emergency Medicine.

    Google Scholar 

  35. Li, C., Chen, L. J., Chen, X., Zhang, M., Pang, C. P., & Chen, H. (2020). Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Euro surveillance: bulletin Europeensur les maladies transmissibles=European Communicable Disease Bulletin, 25(10), 2000199. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000199.

  36. Chan, T. M., Dzara, K., Dimeo, S. P., Bhalerao, A., & Maggio, L. A. (2020). Social media in knowledge translation and education for physicians and trainees: A scoping review. Perspectives on Medical Education9(1), 20–30. https://doi.org/10.1007/s40037-019-00542-7.

  37. Han, B., Cook, P., & Baldwin, T. (2012). Geolocation prediction in social media data by finding location indicative words. COLING.

    Google Scholar 

  38. Lyseen, A. K., Nøhr, C., Sørensen, E. M., Gudes, O., Geraghty, E. M., Shaw, N. T., … & IMIA Health GIS Working Group. (2014). A review and framework for categorizing current research and development in health related geographical information systems (GIS) studies. Yearbook of Medical Informatics, 23(01), 110–124.

    CrossRef  Google Scholar 

  39. Boulos, M. N., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. International Journal of Health Geographics, 19.

    Google Scholar 

  40. Freifeld, C. C., Mandl, K. D., Reis, B. Y., & Brownstein, J. S. (2008). HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. Journal of the American Medical Informatics Association: JAMIA, 15(2), 150–157. https://doi.org/10.1197/jamia.M2544.

    CrossRef  Google Scholar 

  41. Carrion, M., & Madoff, L. C. (2017). ProMED-mail: 22 years of digital surveillance of emerging infectious diseases. International Health, 9(3), 177–183. https://doi.org/10.1093/inthealth/ihx014.

  42. Mackenzie, J. S., Drury, P., Arthur, R. R., Ryan, M. J., Grein, T., Slattery, R., Suri, S., Domingo, C. T., & Bejtullahu, A. (2014). The global outbreak alert and response network. Global Public Health, 9(9), 1023–1039. https://doi.org/10.1080/17441692.2014.951870.

  43. Berger, S. A. (2001). GIDEON: A computer program for diagnosis, simulation, and informatics in the fields of geographic medicine and emerging diseases. Emerging Infectious Diseases, 7(3 Suppl), 550. https://doi.org/10.3201/eid0707.017729.

  44. Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet. Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1.

  45. Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., et al. (2018). Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics, 34(23), 4121–4123. https://doi.org/10.1093/bioinformatics/bty407.

    CrossRef  Google Scholar 

  46. Gong, M., Liu, L., et al. (2020). Cloud-based system for effective surveillance and control of COVID-19: Useful experiences from Hubei, China. Journal of Medical Internet Research, 22(4), e18948.

    CrossRef  Google Scholar 

  47. Simonsen, L., Gog, J. R., et al. (2016). Infectious disease surveillance in the big data era: towards faster and locally relevant systems. The Journal of Infectious Diseases, 214(4), S380–S385.

    Google Scholar 

  48. Salathé, M. (2016). Digital pharmacovigilance and disease surveillance: Combining traditional and big-data systems for better public health. The Journal of Infectious Diseases, 214(4), S399–S403.

    Google Scholar 

  49. Nelli, L., Ferguson, H. M., & Matthiopoulos, J. (2019). Achieving explanatory depth and spatial breadth in infectious disease modelling: Integrating active and passive case surveillance. Statistical Methods in Medical Research, 18, 962280219856380.

    Google Scholar 

  50. Abidi, S. S. R., & Abidi, S. R. (2019). Intelligent health data analytics: A convergence of artificial intelligence and big data. Healthc Manage Forum, 32(4), 178–182.

    CrossRef  Google Scholar 

  51. Bansal, S., Chowell, G., et al. (2016). Big data for infectious disease surveillance and modeling. The Journal of Infectious Diseases, 214(suppl_4), S375–S379.

    Google Scholar 

  52. Ahmed, W., Vidal-Alaball, J., Downing, J., & LópezSeguí, F. (2020). COVID-19 and the 5G conspiracy theory: Social network analysis of twitter data. Journal of medical Internet Research, 22(5), e19458. https://doi.org/10.2196/19458.

  53. Samaras, L., García-Barriocanal, E., & Sicilia, M. A. (2020). Syndromic surveillance using web data: A systematic review. Innovation in Health Informatics, 39–77. https://doi.org/10.1016/B978-0-12-819043-2.00002-2.

  54. Xie, Y., Chen, Z., Cheng, Y., Zhang, K., Agrawal, A., Liao, W. K., & Choudhary, A. (2013). Detecting and tracking disease outbreaks by mining social media data. In Twenty-Third International Joint Conference on Artificial Intelligence.

    Google Scholar 

  55. Qazi, S., Tanveer, K., et al. (2019). From telediagnosis to teletreatment: The role of computational biology and bioinformatics in tele-based healthcare. In Telemedicine Technologies (pp. 153–169). Academic Press.

    Google Scholar 

  56. Zarocostas, J. (2020). How to fight an infodemic. Lancet, 395(10225), 676.

    CrossRef  Google Scholar 

  57. Facebook Ad Library. https://www.facebook.com/ads/library/?active_status=all&ad_type=all&country=IN&impression_search_field=has_impressions_lifetime.

  58. Maddah, E., & Beigzadeh, B. (2020). Use of a smartphone thermometer to monitor thermal conductivity changes in diabetic foot ulcers: A pilot study. Journal of Wound Care, 29(1), 61–66.

    CrossRef  Google Scholar 

  59. Allam, Z., & Jones, D. S. (2020). On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management. Healthcare, 8(1), 46.

    CrossRef  Google Scholar 

  60. Kumar, A., Gupta, P. K., & Srivastava, A. (2020). A review of modern technologies for tackling COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 569–573.

    CrossRef  Google Scholar 

Download references

Acknowledgements

SQ is supported by DST-INSPIRE Fellowship provided by the Department of Science and Technology (DST), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Qazi, S., Ahmad, S., Raza, K. (2021). Using Computational Intelligence for Tracking COVID-19 Outbreak in Online Social Networks. In: Raza, K. (eds) Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Studies in Computational Intelligence, vol 923. Springer, Singapore. https://doi.org/10.1007/978-981-15-8534-0_3

Download citation