Skip to main content

Role of Computational Intelligence Against COVID-19

Part of the Studies in Computational Intelligence book series (SCI,volume 923)

Abstract

The recent COVID-19 pandemic caused due to the notorious SARS-CoV-2 virus has caused widespread loss of human lives across the globe. It has affected more than 213 countries, with a count of 11,669,259 cases and 539,906 deaths, as per WHO report on 9 July 2020. The epidemic has brought the world to a halt and has pointed out the shortcomings of the healthcare system and the flaws in epidemic management. The traditional ways of healthcare management have collapsed under these exigent circumstances. In these trying times, there is a dire need for better implementation of available resources and technology to accelerate the management of the pandemic. Hence, a systematic and thorough assessment of available technology, resources, tools, and techniques will point us in the right direction for finding potential solutions for the control of the severity or spread of the disease and ultimately finding a cure. The use of the advanced field of computational intelligence, which includes Artificial Intelligence, Machine Learning, and Big Data analytics, for clinical/healthcare data can serve substantial solutions in the current scenarios. This chapter aims to discuss the role of AI, ML, as well as Big Data analytics, in healthcare and epidemic management. The chapter elaborates on various applications of computational intelligence in speed tracking of spread, identifying patients with critically low immunity/high-risk patients, assistance in treatment and diagnosis, controlling the spread, and future predictions using the current dataset. The chapter addresses a significant application of Computational intelligence in the research area of drug discovery and repurposing in the hunt for a cure. It briefly discusses technologies like Blockchain and AI-empowered image acquisition that have proved their significance in diagnosis and treatment in various countries, globally. The chapter proposes short-term action plans for combating the virus using computational intelligence while outlining future strategies of applying CI in healthcare management and its long-term benefits.

Keywords

  • COVID-19
  • Artificial intelligence
  • Machine learning
  • Computational intelligence
  • Big data analytics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-8534-0_2
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-8534-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andersen, K. G., Rambaut, A., Lipkin, W. I., et al. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450–452.

    CrossRef  Google Scholar 

  2. Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181–192.

    CrossRef  Google Scholar 

  3. Li, W., Shi, Z., Yu, M., et al. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310, 676–679.

    CrossRef  Google Scholar 

  4. Huang, C., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497–506. https://doi.org/10.1016/S0140-6736%5b59%5d30183-5.

    CrossRef  Google Scholar 

  5. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., et al. (2020). Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. New England Journal of Medicine, 382(13), 1199–1207.

    CrossRef  Google Scholar 

  6. Li, Y. C., Bai, W. Z., & Hashikawa, T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients [published online ahead of print, 2020 27 February]. Journal of Medical Virology. https://doi.org/10.1002/jmv.25728.

  7. Liu, J., Liao, X., Qian, S., et al. (2020). Community transmission of severe acute respiratory syndrome Coronavirus 2, Shenzhen, China. Emerging Infectious Diseases, 26(6), 1320–1323. https://doi.org/10.3201/eid2606.200239.

    CrossRef  Google Scholar 

  8. Liu, K., Fang, Y. Y., & Deng, Y. (2020). Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province [published online ahead of print, 2020 7 February]. Chinese Medical Journal. https://doi.org/10.1097/cm9.0000000000000744.

  9. Zheng, S., Fan, J., Yu, F., Feng, B., Lou, B., Zou, Q., … Liang, T. (2020). Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ, 369, m1443. https://doi.org/10.1136/bmj.m1443

  10. Hindson, J. (2020). COVID-19: Faecal–oral transmission? Nature Reviews Gastroenterology & Hepatology, 17, 259. https://doi.org/10.1038/s41575-020-0295-7.

    CrossRef  Google Scholar 

  11. Qazi, S., Sheikh, K., Faheem, M., Khan, A., & Raza, K. (2020). A coadunation of biological and mathematical perspectives on the pandemic COVID-19: A review. Preprints 2020, 2020040007. doi: 10.20944/preprints202004.0007.v1.

    Google Scholar 

  12. Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(1), 1–8. https://doi.org/10.1186/s40249-020-00640-3.

    CrossRef  Google Scholar 

  13. Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y., & Wu, J. (2020). An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious Disease Modelling, 5, 248–255.

    CrossRef  Google Scholar 

  14. Tang, N., Li, D., Wang, X., Sun, Z. (2020b). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(4), 844–847. https://doi.org/10.1111/jth.14768.

  15. Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020c). Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. Journal of Clinical Medicine, 9(2), 462. https://doi.org/10.3390/jcm9020462.

  16. Tang, X., Wu, C., Li, X., et al. (2020d). On the origin and continuing evolution of SARS-CoV-2. National Science Review. nwaa036. https://doi.org/10.1093/nsr/nwaa036.

  17. Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S. S., et al. (2020). A conceptual model for the outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 93, 211–216. https://doi.org/10.1016/j.ijid.2020.02.058.

    CrossRef  Google Scholar 

  18. Wu, A., Peng, Y., Huang, B., Ding, X., et al. (2020). Genome composition and divergence of the Novel Coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328.

    CrossRef  Google Scholar 

  19. Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008.

  20. Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 395(10225), 689–697. https://doi.org/10.1016/S0140-6736%5b59%5d30260-9.

    CrossRef  Google Scholar 

  21. Corman, V. M., Muth, D., Niemeyer, D., & Drosten, C. (2018). The proximal origin of SARS-CoV-2. Advances in Virus Research, 100, 163–188.

    CrossRef  Google Scholar 

  22. Arentz, M., Yim, E., Klaff, L., et al. (2020). Characteristics and outcomes of 21 critically Ill patients with COVID-19 in Washington State. JAMA, 323(16), 1612–1614. https://doi.org/10.1001/jama.2020.4326.

    CrossRef  Google Scholar 

  23. Bauch, C. T., Lloyd-Smith, J. O., Coffee, M. P., & Galvani, A. P. (2005). Dynamically modelling SARS and other newly emerging respiratory illnesses: Past, present, and future. Epidemiology, 16(6), 791–801.

    CrossRef  Google Scholar 

  24. Pan, Y., et al. (2020). Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20(4), 411–412. https://doi.org/10.1016/S1473-3099(20)30113-4.

    CrossRef  Google Scholar 

  25. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., et al. (2020). China Novel Coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733.

    Google Scholar 

  26. Cascella, M., Rajnik, M., Cuomo, A., et al. (2020). Features, evaluation and treatment coronavirus (COVID-19) [Updated 2020 18 May]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/

  27. Zhou, F., Yu, T., Du, R., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 395, 1054–1062.

    CrossRef  Google Scholar 

  28. Zhou, Z., Zhao, N., Shu, Y., Han, S., Chen, B., & Shu, X. (2020). Effect of gastrointestinal symptoms on patients infected with Coronavirus Disease 2019. Gastroenterology, S0016–5085(20), 30362. https://doi.org/10.1053/j.gastro.2020.03.020.

    CrossRef  Google Scholar 

  29. Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China [published correction appears in Intensive Care Med. 2020 6 April]. Intensive Care Medicine, 46(5), 846–848. https://doi.org/10.1007/s00134-020-05991-x.

    CrossRef  Google Scholar 

  30. Mehta, P., McAuley, D. F., & Brown, M. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736%5b59%5d30628-0.

    CrossRef  Google Scholar 

  31. Qin, C., Zhou, L., & Hu, Z. (2020) Dysregulation of immune response in patients with COVID-19 in Wuhan, China [published online ahead of print, 2020 12 March]. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciaa248.ciaa248.

  32. Qin, L., Sun, Q., Wang, Y., et al. (2020). Prediction of number of cases of 2019 Novel Coronavirus (COVID-19) using social media search index. International Journal of Environmental Research and Public Health, 17(7), 2365. https://doi.org/10.3390/ijerph17072365.

    CrossRef  Google Scholar 

  33. Raza, K., & Qazi, S. (2019). Nanopore sequencing technology and internet of living things: A big hope for u-healthcare. Sensors for health monitoring (Vol. 5). London, UK: Elsevier, Academic Press.

    Google Scholar 

  34. Patel, S., Nanda, R., Sahoo, S., & Mohapatra, E. (2016). Biosensors in health care: The milestones achieved in their development towards lab-on-chip-analysis. Biochemistry Research International, 2016, 1–12.

    CrossRef  Google Scholar 

  35. Avci, O., Ünlü, N. L., et al. (2015). Interferometric reflectance imaging sensor (IRIS)—A platform technology for multiplexed diagnostics and digital detection. Sensors (Basel), 15(7), 17649–17665.

    CrossRef  Google Scholar 

  36. Qazi, S. (2017). Personalized medicines in psychiatry: Promises and challenges. Journal of Computational and Applied Mathematics, 2(2), 50–55.

    Google Scholar 

  37. Qazi, S, & Raza, K. (2020). Smart biosensors for an efficient point of care (PoC) health management. In J. Chaki, N. Dey, & D. B. T.-S. B. in M. C. De (Eds.), Advances in ubiquitous sensing applications for healthcare (pp. 65–85). Academic Press. https://doi.org/10.1016/B978-0-12-820781-9.00004-8.

  38. Wadman, M., Couzin-Frankel, J., Kaiser, J., & Matacic, C. (2020). A rampage through the body. Science, 368(6489), 356–360. https://doi.org/10.1126/science.368.6489.356.

    CrossRef  Google Scholar 

  39. Dariya B, Nagaraju GP (2020) Understanding novel COVID-19: Its impact on organ failure and risk assessment for diabetic and cancer patients [published online ahead of print, 2020 6 May]. Cytokine Growth Factor Rev S1359–6101(20), 30078–2. https://doi.org/10.1016/j.cytogfr.2020.05.001

  40. Hu, H., Ma, F., Wei, X., & Fang, Y. (2020). Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin [published online ahead of print, 2020 16 March]. European Heart Journal. https://doi.org/10.1093/eurheartj/ehaa190.

  41. Akhmerov, A., & Marban, E. (2020). COVID-19 and the Heart [published online ahead of print, 2020 7 April]. Circ Res 2020 https://doi.org/10.1161/circresaha.120.317055

  42. Zeng, J H., Liu, Y. X., & Yuan, J. (2020) First case of COVID-19 complicated with fulminant myocarditis: A case report and insights [published online ahead of print, 2020 10 April]. Infection. https://doi.org/10.1007/s15010-020-01424-5.

  43. McIntosh, K. (2020). Coronavirus disease 2019 (COVID-19): Epidemiology, virology, clinical features, diagnosis, and prevention. Available via dialog: https://uptodate.com/contents/coronavirus-disease-2019-covid-19-epidemiology-virology-and-prevention

  44. Wong, S. H., Lui, R. N., & Sung, J. J. (2020) Covid-19 and the Digestive System [published online ahead of print, 2020 25 March]. European Journal of Gastroenterology & Hepatology, 35(5). https://doi.org/10.1111/jgh.15047

  45. Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and multiorgan response. Current Problems in Cardiology, 45(8), 100618. https://doi.org/10.1016/j.cpcardiol.2020.100618

  46. Mao, L., Wang, M. D., Chen, S. H., He, Q. W., Chang, J., Hong, C. D., et al. (2020). Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. medRxiv. doi: https://doi.org/10.1101/2020.02.22.20026500.

  47. Rajkumar, R. P. (2020). COVID-19 and mental health: A review of the existing literature [published online ahead of print, 2020 10 April]. Asian Journal of Psychiatry, 52, 102066. https://doi.org/10.1016/j.ajp.2020.102066.

  48. Wang, C., Pan, R., Wan, X., Tan, Y., Xu, L., Ho, C. S., et al. (2020). Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. International Journal of Environmental Research and Public Health, 17(5), E1729.

    CrossRef  Google Scholar 

  49. Xiao, H., Zhang, Y., Kong, D., Li, S., & Yang, N. (2020). Social capital and sleep quality in individuals who self-isolated for 14 days during the coronavirus disease 2019 (COVID-19) outbreak in January 2020 in China. Medical Science Monitor, 26, e923921.

    CrossRef  Google Scholar 

  50. Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7(6), 439–450.

    CrossRef  Google Scholar 

  51. Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052.

    CrossRef  Google Scholar 

  52. Song, W., Gui, M., Wang, X., & Xiang, Y. (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathogens, 14(8), e1007236.

    CrossRef  Google Scholar 

  53. Xu, X., Chen, P., Wang, J., et al. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences, 63, 457–460.

    CrossRef  Google Scholar 

  54. Pham, Q., Nguyen, D. C., Huynh-The, T., Hwang, W., & Pathirana, P. N. (2020). Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19) Pandemic: A survey on the state-of-the-arts. Preprints, 2020040383. https://doi.org/10.20944/preprints202004.0383.v1.

  55. Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., et al. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes Infect, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902.

    CrossRef  Google Scholar 

  56. Dong, L., Hu, S., & Gao, J. (2020). Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics, 14(1), 58–60. https://doi.org/10.5582/ddt.2020.01012.

    CrossRef  Google Scholar 

  57. Dong, N., et al. (2020). Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan. China: BioRxiv. https://doi.org/10.1101/2020.01.20.913368.

    CrossRef  Google Scholar 

  58. Woo, P. C., Lau, S. K., Lam, C. S., et al. (2009). Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. Journal of Virology, 83(2), 908–917. https://doi.org/10.1128/JVI.01977-08.

    CrossRef  Google Scholar 

  59. Omrani, A. S., Al-Tawfiq, J. A., & Memish, Z. A. (2015). Middle east respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction. Pathog Glob Health, 109(8), 354–362. https://doi.org/10.1080/20477724.2015.1122852.

    CrossRef  Google Scholar 

  60. Zheng, J. (2020). SARS-CoV-2: An emerging Coronavirus that causes a global threat. International Journal of Biological Sciences, 16(10), 1678–1685. https://doi.org/10.7150/ijbs.45053.

    CrossRef  Google Scholar 

  61. Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., & Petersen, E. (2020). COVID-19, SARS and MERS: Are they closely related? Clinical Microbiology & Infection, 26(6), 729–734. https://doi.org/10.1016/j.cmi.2020.03.026.

    CrossRef  Google Scholar 

  62. Ibrahim, I. M., Abdelmalek, D. H., Elshahat, M. E., & Elfiky, A. A. (2020). COVID-19 spike-host cell receptor GRP78 binding site prediction. Journal of Infection, 80(5), 554–562. https://doi.org/10.1016/j.jinf.2020.02.026.

  63. Duan, S.-M., Zhao, X.-S., Wen, R.-F., Huang, J.-J., Pi, G.-H., Zhang, S.-X., et al. (2003). Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomedical and Environmental Sciences, 16, 246–255.

    Google Scholar 

  64. Fang, Y., Zhang, H., Xie, J., et al. (2020). Sensitivity of chest CT for COVID-19: Comparison to RT-PCR [published online ahead of print, 2020 19 February]. Radiology 200432. https://doi.org/10.1148/radiol.2020200432.

  65. McCall, B. (2020). COVID-19 and artificial intelligence: Protecting healthcare workers and curbing the spread. Lancet Digit. Health, 2, e166–e167.

    CrossRef  Google Scholar 

  66. Srinivasa Rao, A. S. R., & Vazquez, J. A. (2020) Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine [published online ahead of print, 2020 3 March]. Infection Control & Hospital Epidemiology 1–5. https://doi.org/10.1017/ice.2020.61.

  67. Srinivasa Rao, A., & Vazquez, J. (2020). Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine. Infection Control & Hospital Epidemiology, 41(7), 826–830. https://doi.org/10.1017/ice.2020.61.

  68. Khan, F. N., Qazi, S., Tanveer, K., & Raza, K. (2017). A review on the antagonist Ebola: A prophylactic approach. Biomedicine & Pharmacotherapy, 96, 1513–1526. https://doi.org/10.1016/j.biopha.2017.11.103.

    CrossRef  Google Scholar 

  69. Gordon, C. J., Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Götte, M. (2020). The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry, 295(15), 4773–4779.

    CrossRef  Google Scholar 

  70. de Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., et al. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences of the United States of America, 117(12), 6771–6776.

    CrossRef  Google Scholar 

  71. Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., et al. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. bioRxiv 2020.01.28.923011. doi: https://doi.org/10.1101/2020.01.28.923011.

  72. Qazi, S., Tanveer, K., El-Bahnasy, K., & Raza, K. (2019). From telediagnosis to teletreatment: The role of computational biology and bioinformatics in tele-based healthcare. H. D. Jude & V. E. B. T.-T. T. Balas (Eds.), (pp. 153–169). Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-816948-3.00010-6.

  73. Dinesen, B., Nonnecke, B., Lindeman, D., Toft, E., Kidholm, K., Jethwani, K., et al. (2016). Personalized Telehealth in the future: A global research agenda. Journal of Medical Internet Research, 18(3).

    Google Scholar 

  74. Zhang, L., Ai, H. X., Li, S. M., Qi, M. Y., et al. (2017). Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget, 8(47), 83142–83154. doi: https://doi.org/10.18632/oncotarget.20915.

  75. Zhang, Y. N. (2017). Can a smartphone diagnose Parkinson dis- ease? A deep neural network method and telediagnosis system implementation. Parkinson’s Disease, 2017

    Google Scholar 

  76. Corriveau, H., Tousignant, M., Gosselin, S., Boissy, P., Azevedo, L., & Gelderblom, G. J. (2013). Patients satisfaction with an in-home telerehabilitation exercise program and phys- iotherapists’ satisfaction toward technology for an acute stroke population: a pilot study. Assistive Technology: from research to practice, 33, 753–757.

    Google Scholar 

  77. Ekins, S., Freundlich, J. S., Clark, A. M., Anantpadma, M., Davey, R. A., Madrid, P. (2015). Machine learning models identify molecules active against the Ebola virus in vitro. F1000 Research 4, 1091. https://doi.org/10.12688/f1000research.7217.3.

  78. Richardson, P., Griffin, I., Tucker, C., et al. (2020). Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 395(10223), e30–e31. https://doi.org/10.1016/S0140-6736(20)30304-4.

    CrossRef  Google Scholar 

  79. Wan, F., Hong, L., Xiao, A., Jiang, T., & Zeng, J. (2019). NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics, 35(1), 104–111. https://doi.org/10.1093/bioinformatics/bty543.

    CrossRef  Google Scholar 

  80. Ge, Y., Tian, T., Huang, S., Wan, F., Li, J. et al. (2020). A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. https://doi.org/10.1101/2020.03.11.986836.

  81. Dini, G., Bragazzi, N. L., Montecucco, A., Toletone, A., Debarbieri, N., & Durando, P. (2019). Big Data in occupational medicine: The convergence of -omics sciences, participatory research and e-health. Medicina del Lavoro, 110, 102–114.

    Google Scholar 

  82. Magoula, R., & Lorica, B. (2009). Introduction to big data. Available via dialog. http://www.oreilly.com/data/free/release-2-iss.

  83. Gianfredi, V., Bragazzi, N. L., Nucci, D., Martini, M., et al. (2018). Harnessing big data for communicable tropical and sub-tropical disorders: Implications from a systematic review of the literature. Frontiers in Public Health, 6, 90.

    CrossRef  Google Scholar 

  84. Sun, K., Chen, J., & Viboud, C. (2020). Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: A population-level observational study. The Lancet Digital Health, 2(4), e201–e208. https://doi.org/10.1016/S2589-7500(20)30026-1.

    CrossRef  Google Scholar 

  85. Sohrabi, C., Alsafi, Z., O’Neill, N., et al. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19) [published correction appears in Int J Surg. 2020 May; 77:217]. International Journal of Surgery, 76, 71–76. https://doi.org/10.1016/j.ijsu.2020.02.034.

    CrossRef  Google Scholar 

  86. Yang, Y., Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., Sun, J., & Chang, C. (2020). The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity, 109, 102434. https://doi.org/10.1016/j.jaut.2020.102434

  87. Schork, N. J. (2019). Artificial intelligence and personalized medicine. Cancer Treatment and Research, 178, 265–283. https://doi.org/10.1007/978-3-030-16391-4_11.

    CrossRef  Google Scholar 

  88. Munsell, B. C., Wee, C. Y., Keller, S. S., Weber, B., Elger, C., et al. (2015). Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuro Image, 118, 219–230.

    Google Scholar 

  89. Trebeschi, S., Drago, S. G., Birkbak, N. J., Kurilova, I., et al. (2019). Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Annals of oncology: Official journal of the European Society for Medical Oncology, 30(6), 998–1004. https://doi.org/10.1093/annonc/mdz108.

    CrossRef  Google Scholar 

  90. Bhattacharya, S., Singh, A., & Hossain, M. M. (2019). Strengthening public health surveillance through blockchain technology. AIMS Public Health, 6(3), 326–333. https://doi.org/10.3934/publichealth.2019.3.326.

    CrossRef  Google Scholar 

  91. Mashamba-Thompson, T. P., & Crayton, E. D. (2020). Blockchain and artificial intelligence technology for Novel Coronavirus Disease-19 self-testing. Diagnostics (Basel), 10(4), 198. https://doi.org/10.3390/diagnostics10040198.

  92. Hasselgren, A., Kralevska, K. ,Gligoroski, K., Pedersen, S. A., & Faxvaag, A. (2019). Blockchain in healthcare and health sciences—A scoping review. International Journal of Medical Informatics, 104040.

    Google Scholar 

  93. Nguyen, D., Ding, M., Pathirana, P. N., & Seneviratne, A. (2020). Blockchain and AI-based solutions to combat coronavirus (COVID-19)-like epidemics: A survey. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.12121962.v1.

  94. Acoer Coronavirus Tracker, Powered by Hedera Hashgraph, Now Freely Available to General Public with Added Clinical Trial Data. (2020). Available: https://www.hedera.com/blog/acoer-coronavirustracker-powered-by-hedera-hashgraph-now-freely-available-to-generalpublic-with-added-clinical-trial-data.

  95. Hyper Chain-Blockchain Charity Platform to Fight Against the Coronavirus. (2020). Available: https://www.hyperchain.cn/en.

  96. VeChain Announces Blockchain Vaccine Tracing Solution for China. (2020). Available: https://www.nasdaq.com/articles/vechainannounces-blockchain-vaccine-tracing-solution-china-2018-08-16.

  97. Public Health Blockchain Consortium: PHBC. (2020). Available: https://www.phbconsortium.org/.

  98. Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for disease control and prevention. JAMA, 323(13), 1239–1242. https://doi.org/10.1001/jama.2020.2648.

    CrossRef  Google Scholar 

  99. Angeletti, S., Benvenuto, D., Bianchi, M., et al. (2020). COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. Journal of Medical Virology, 92(6). doi: https://doi.org/10.1002/jmv.2571.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasha Hasija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, S., Hasija, Y. (2021). Role of Computational Intelligence Against COVID-19. In: Raza, K. (eds) Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Studies in Computational Intelligence, vol 923. Springer, Singapore. https://doi.org/10.1007/978-981-15-8534-0_2

Download citation