Kassani, S. H., Kassasni, P. H., Wesolowski, M. J., Schneider, K. A., & Deters, R. (2020). Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A machine learning-based approach. arXiv preprint arXiv:2004.10641.
Heidari, M., Mirniaharikandehei, S., Khuzani, A. Z., Danala, G., Qiu, Y., & Zheng, B. (2020). Improving performance of CNN to predict likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. arXiv preprint arXiv:2006.12229.
Siddhartha, M., & Santra, A. (2020). COVIDLite: A depth-wise separable deep neural network with white balance and CLAHE for detection of COVID-19. arXiv preprint arXiv:2006.13873.
Horry, M. J., Paul, M., Ulhaq, A., Pradhan, B., Saha, M., & Shukla, N. (2020). X-Ray image based COVID-19 detection using pre-trained deep learning models.
Google Scholar
Beutel, J., Kundel, H. L., & Van Metter, R. L. (2000). In Handbook of medical imaging (Vol. 1), Spie Press.
Google Scholar
Kocer, H. E., Cevik, K. K., Sivri, M., & Koplay, M. (2016). Measuring the effect of filters on segmentation of developmental dysplasia of the Hip. Iranian Journal of Radiology, 13(3), 1–9.
CrossRef
Google Scholar
Senthilraja, S., Suresh, P., & Suganthi, M. (2014). Noise reduction in computed tomography image using WB filter. IJSER, 5(3), 243–247.
Google Scholar
Pal, C., Das, P., Chakrabarti, A., & Ghosh, R. (2017). Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering. International Journal of Imaging Systems and Technology, 27(3), 248–264.
CrossRef
Google Scholar
Jeevakala, S., & Therese, B. (2016). Non local means filter based rician noise removal of MR images. International Journal of Pure and Applied Mathematics, 109(5), 133–139.
Google Scholar
Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2010). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1), 92–203.
CrossRef
Google Scholar
Yang, J., Fan, J., Ai, D., Zhou, S., Tang, S., & Wang, Y. (2015). Brain MR image denoising for rician noise using pre-smooth non-local means filter. Biomedical Engineering Online, 14(2), 2–20.
CrossRef
Google Scholar
Reischauer, C., & Gutzeit, A. (2017). Image denoising substantially improves accuracy and precision of intravoxel incoherent motion parameter estimates. PLoS ONE, 12(4), e0175106.
CrossRef
Google Scholar
Yadav, R. B., Srivastava, S., & Srivastava, R. (2017). Modified complex diffusion based nonlinear filter for restoration and enhancement of magnetic resonance image. International Journal of Biomedical Engineering and Technology, 23(1), 19–37.
CrossRef
Google Scholar
Bhadauria, H. S., & Dewal, M. L. (2012). Efficient denoising technique for ct images to enhance brain hemorrhage segmentation”. Journal of Digital Imaging, 25(6), 782–791.
CrossRef
Google Scholar
Sullivan, B. J., Ansari, R., Giger, M. L., MacMahon, H. (1995). Effects of image preprocessing/resizing on diagnostic quality of compressed medical images [Chest Radiographs Application]. In Proceedings of IEEE International Conference on Image Processing, Washington, USA, Oct 23, (Vol. 2, pp. 13–16).
Google Scholar
Jallouli, S., Zouari, S., Masmoudi, A., Puech, W., Masmoudi, N. (2017). A preprocessing technique for improving the compression performance of JPEG 2000 for images with sparse or locally sparse histograms. In 25th European Signal Processing Conference (EUSIPCO), Aug 28-Sep 02 (pp. 1912–1916). IEEE.
Google Scholar
Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H. P. (2005). Towards PDE-based image compression. In Variational, geometric, and level set methods in computer vision (pp. 37–48). Berlin, Heidelberg: Springer.
Google Scholar
Malladi, R., James, A. S., & Baba, C. V. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 158–175.
CrossRef
Google Scholar
Weickert, J. (1998). Anisotropic diffusion in image processing. (pp. 1–184). B.G Teubner Stuttgart.
Google Scholar
Al-Ameen, Z., Al-Healy, M. A., & Hazim, R. A. (2019). Anisotropic diffusion-based unsharp masking for sharpness improvement in digital images. Journal of Soft Computing and Decision Support Systems., 7(1), 7–12.
Google Scholar