Skip to main content

Rapid Computer Diagnosis for the Deadly Zoonotic COVID-19 Infection

Part of the Studies in Computational Intelligence book series (SCI,volume 923)

Abstract

The life cycle of SARS-CoV-2 is complexly linked with that of its host, thereby, rendering all prospective treatments ineffective. Recently, there was a drift from Cross-species transmission (Zoonosis)  →  Intra-species  →  Nosocomial transmission, thereby, increasing the risk of infection. In consortium with WHO, rapid computer diagnosis (RCD) was exigent, as it will increase the chances of identification of suspected cases and minimize false-positive diagnosis. Etaware-CDT-2020 RCD Model “Y = α + β1X1 + β2X2 + β3X3 + … β26X26” was developed using broad-spectra symptoms catalogue for COVID-19. The best-fit model was adjudged by R2, R-SqAdj, AIC, BIC, MSEPred., MAE, LOO_Press, LOOPreR2, LOO-MAE, LGO_Press, LGOPreR2, LGO-MAE etc., validated by bootstrapping and trial diagnosis. The R2 and R-SqAdj values were positive (1.00 and 1.00, respectively), while AIC and BIC values were negligible (−3677.10 and −3659.60, respectively). The mean error of diagnosis was least in Hubei cases (11.1), while the standard error of diagnosis was insignificant in confirmed cases outside Hubei (2.0), and those linked (or not) to Wuhan (2.0). The similarity index of diagnosis (R and R2) was best-fit in Hubei cases (0.78 and 0.49, respectively). Etaware-CDT-2020 is a better alternative for COVID-19 diagnosis and it is very easy to setup. It can be utilized in hospitals, clinics, homes, offices, and public places with ease.

Keywords

  • Zoonosis
  • Nosocomial transmission
  • Etaware-CDT-2020
  • rRT-PCR
  • SARS-CoV-2
  • Coronavirus disease 2019

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-8534-0_12
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-8534-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

RCD:

Rapid Computer Diagnosis

BSL-2:

Biosafety Level 2

RIT:

Rapid Immunodiagnostic Test

COVID-19:

Coronavirus Disease 2019

SARS-CoV-2:

Severe Acute Respiratory Syndrome Coronavirus 2

WHO:

World Health Organization

rRT-PCR:

Real time Reverse Transcription Polymerase Chain Reaction

Etaware-CDT-2020:

Etaware Computer Diagnostic Tool 2020

SCD-Boundary:

Suspect Case Definition Boundary for COVID-19 Infection

ACR:

Actual Clinical Report

References

  1. Bruning, A. H. L., Leeflang, M. M. G., Vos, J. M. B. W., Spijker, R., de Jong, M. D., Wolthers, K. C., et al. (2017). Rapid tests for influenza, respiratory syncytial virus, and other respiratory viruses: A systematic review and meta-analysis. Clinically Infectious Diseases, 65(6), 1026–1032. https://academic.oup.com/cid/article/65/6/1026/3829590/Rapid-Tests-for-Influenza-Respiratory-Syncytial.

  2. Cao, Y., Liu, X., Xiong, L., & Cai, K. (2020). Imaging and clinical features of patients with 2019 novel coronavirus SARS‐CoV‐2: A systematic review and meta‐analysis. Journal of Medical Virology, 1–11.

    Google Scholar 

  3. Centers for Disease Control and Prevention (CDC). (2020). 2019 novel coronavirus, Wuhan, China. Retrieved on Febraury 14, 2020, from https://www.cdc.gov/coronavirus/2019-ncov/index.html.

  4. Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395, 514–523.

    CrossRef  Google Scholar 

  5. Che, X., Qiu, L., Liao, Z., Wang, Y., et al. (2005). Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. The Journal of Infectious Diseases, 191(12), 2033–2037.

    CrossRef  Google Scholar 

  6. Cortellis. (2020). Disease briefing: Coronaviruses. A clarivate analytics solution (46 pp.). Retrieved on March 06, 2020, from www.clarivate.com/cortellis.

  7. Etaware, P. M. (2020a). Medicinal plants, synthetic drugs or clinical therapy: The safest option against the pandemic COVID-19 coronavirus. Pharmacology and Alternative Medicine Academic Journal (Pamaj), 5(3), 1–13.

    Google Scholar 

  8. Etaware, P. M. (2020b). Risk assessment and global sensitization on the pandemic spread and zoonotic transmission of the deadly COVID-19 coronavirus infection. Pharmacology and Alternative Medicine Academic Journal (Pamaj), 5(2), 1–12.

    Google Scholar 

  9. Etaware, P. M., Adedeji, A. R., Osowole, O. I., & Odebode, A. C. (2020). ETAPOD: A forecast model for prediction of black pod disease outbreak in Nigeria. PLoS ONE, 15(1), e0209306. https://doi.org/10.1371/journal.pone.0209306

    CrossRef  Google Scholar 

  10. Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., et al. (2020). Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. bioRxiv 2020.02.07.937862; https://doi.org/10.1101/2020.02.07.937862.

  11. Gralinski, L. E., Baric, R. S., et al. (2015). Molecular pathology of emerging coronavirus infections. Journal of Pathology, 235(2), 185.

    CrossRef  Google Scholar 

  12. Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., et al. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv preprint; https://doi.org/10.1101/2020.02.06.20020974.

  13. Helmy, Y. A., Fawzy, M., Elaswad, A., Sobieh, A., Scott P., et al. (2020). The COVID-19 pandemic: A comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. Journal of Clinical Medicine, 1–29.

    Google Scholar 

  14. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet, 395(10223), 497–506.

    CrossRef  Google Scholar 

  15. Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., et al. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266.

    CrossRef  Google Scholar 

  16. Lai, S., Bogoch, I., Ruktanonchai, N., Watts, A., Li, Y., Yu, J., et al. (2020). Assessing spread risk of Wuhan novel coronavirus within and beyond China, January-April 2020: A travel network-based modeling study. medRxiv; https://doi.org/10.1101/2020.02.04.20020479.

  17. Li, Q., Guan, X., Wu, P., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 382(13), 1199–1207.

    CrossRef  Google Scholar 

  18. Liang, W.-H., Guan, W.-J., Li, C.-C., et al. (2020). Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicenter) and outside Hubei (non-epicenter): A nationwide analysis of China. European Respiratory Journal (In press). https://doi.org/10.1183/13993003.00562-2020.

  19. Lin, D., Liu, L., Zhang, M., Hu, Y., et al. (2020). Evaluation of serological tests in the diagnosis of 2019 novel coronavirus (SARS-CoV-2) infections during the COVID-19 outbreak. medxriv [Internet]; https://doi.org/10.1101/2020.03.27.20045153.

  20. Liu, W., Liu, L., Kou, G., Zheng, Y., et al. (2020). Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. medxriv [Internet]; https://doi.org/10.1101/2020.03.16.20035014.

  21. Liu, Y., Liu, Y., Diao, B., Feifei, R., et al. (2020). Diagnostic indexes of a rapid IgG/IgM combined antibody test for SARS-CoV-2. medxriv [Internet]; https://doi.org/10.1101/2020.03.26.20044883.

  22. Lou, B., Li, T., Zheng, S., Su, Y., Li, Z., Liu, W., et al. (2020). Serology characteristics of SARS-CoV-2 infection since the exposure and post symptoms onset. medxriv [Internet]https://www.medrxiv.org/content/10.1101/2020.03.23.20041707v1.full.pdf.

  23. Mayo Clinic. (2020). Book: Mayo clinic book of home remedies. Mayo foundation for Medical Health and Research. https://www.mayoclinic.org/disease-conditions/fever/symptoms-causes/sync-20352759.

  24. Okba, N. M. A, Muller, M. A., Li, W., Wang, C., et al. (2020). SARS-COV-2 specific antibody responses in COVID-19 patients. medxriv [Internet]. https://www.medrxiv.org/content/10.1101/2020.03.18.20038059v1.

  25. Pan, Y., Li, X., Yang, G., Fan, J., et al. (2020). Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. medxriv [Internet]. https://doi.org/10.1101/2020.03.13.20035428.

  26. Wang, N., Li, S. Y., Yang, X. L., et al. (2018). Serological evidence of bat SARS-related coronavirus infection in humans China. Virol Sinica, 33(1), 104–107.

    CrossRef  Google Scholar 

  27. WHO. (2020a). Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases. Retrieved on May 28, 2020, from https://www.who.int/publications-detail/global-surveillance-for-human-infection-with-novel-coronavirus-(2019-ncov). Interim guidance.

  28. WHO. (2020b). Advivce on the use of point-of-care immunodiagnostic tests for COVID-19. Scientific brief. WHO/2019-nCoV/Sci_Brief/POC_immunodiagnostics/2020.1. 1–3. May 28, 2020.

    Google Scholar 

  29. Wölfel, R., Corman, V., Guggemos, W., Seilmaier, M., Mueller, M., Niemeyer, D., et al. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature.http://www.nature.com/articles/s41586-020-2196-x.

  30. Xu, X.-W., Wu, X.-X., Jiang, X.-G., Xu, K.-J., Ying, L.-J., et al. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ, 2020(368), m606. https://doi.org/10.1136/bmj.m606[Accepted:13February2020].1-7

    CrossRef  Google Scholar 

  31. Xu, Z., Shi, L., Wang, Y., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Medicine, 8(4), 420–422.

    CrossRef  Google Scholar 

  32. Zhang, W., Du, R., Li, B., Zheng, X., et al. (2020). Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerging Microbes and Infections, 9(1), 386–389.

    CrossRef  Google Scholar 

  33. Zhang, P., Gao, Q., Wang, T., Ke, Y., et al. (2020). Evaluation of recombinant nucleocapsid and spice protein serological diagnosis of novel coronavirus disease 2019 (COVID-19). medxriv [Internet]. 2020; https://www.medrxiv.org/content/10.1101/2020.03.17.20036954v1.

  34. Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X., Su, Y., et al. (2020). Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. medxriv [Internet]. https://www.medrxiv.org/content/10.1101/2020.03.02.20030189v1.

  35. Zhou, P., Yang, X. L., Wang, X., Hu, B., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7 (Epub 2020 Feb 3).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mudiaga Etaware .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material 1.

Supplementary material 1 (zip 2.27 MB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Etaware, P.M. (2021). Rapid Computer Diagnosis for the Deadly Zoonotic COVID-19 Infection. In: Raza, K. (eds) Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Studies in Computational Intelligence, vol 923. Springer, Singapore. https://doi.org/10.1007/978-981-15-8534-0_12

Download citation