Skip to main content

Multiple Action Movement Control Scheme for Assistive Robot Based on Binary Motor Imagery EEG

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 654))

  • 111 Accesses

Abstract

In this paper, a weighted voting system combined with basic signal processing methods is used to classify multi-category motor imagery (MI) scenarios (foot, left-hand, right-hand, tongue) to improve the classification accuracy of MI electroencephalogram (EEG) signal. Meanwhile, a feasible binary coding framework is proposed to control the KUKA robotic arm for grasping to improve online performance of applications on brain–computer interfaces (BCIs). Firstly, two-movement MI with the high classification accuracy is selected from four-action types, i.e., foot as 0, left-hand as 1, and their combination representing the four directions of motion direction of the robotic arm (e.g., 00-front, 01-back, 10-left, 11-right) is generated by two-bit binary coding. Next, the motion of the robotic arm in each direction is achieved by two successive movements of MI. Finally, the accuracy of our integrated classifier reaches 74.6% in four-movement MI data and 92.6% in two-movement MI data. Compared to four-movement MI to control the robotic arm, the binary coding method reduces the time by 6.8% and increases the accuracy more than two times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cervera, María A, Soekadar SR, Ushiba J et al (2018) Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Translat Neurol. https://doi.org/10.1002/acn3.544

  2. Huang Q-W, Ning X (2019) Advances in the application of motor imagery in the rehabilitation of stroke patients. J Mod Med Health 35:3185–3188

    Google Scholar 

  3. Pfurtscheller G, Silva FHLD (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. https://doi.org/10.1016/s1388-2457(99)00141-8

  4. Liu F-Y, Li F-B (2017) Overview of brain-computer interface system. Electron World 21:72–73

    Google Scholar 

  5. Savic A, Kisic U, Popovic M (2012) Toward a hybrid BCI for grasp rehabilitation. In: Ifmbe proceedings. https://doi.org/10.1007/978-3-642-23508-5_210

  6. Mei Y-C (2014) Research on upper limb rehabilitation based on brain computer interface. Beijing University of Technology

    Google Scholar 

  7. Li H-W, Chen X-G (2019) Brain-computer interface controlled robotic arm system based on high-level control strategy. Beijing Biomed Eng 38:36–41

    Google Scholar 

  8. Yi W-B (2017) Research on response mechanism and decoding technology of EEG induced by compound motor imagery. Tianjin University

    Google Scholar 

  9. Tao X-W, Yi W-B, Chen L, He F, Qi H-Z (2019) Riemann Kernel support vector machine recursive feature elimination in the field of compound limb motor imagery BCI. J Mech Eng 55:131–137

    Article  Google Scholar 

  10. Cho JH, Jeong JH, Shim KH, Kim DJ, Lee SW (2018) Classification of hand motions within EEG signals for non-invasive BCI-based robot hand control. In: IEEE international conference on systems, man, and cybernetics. Piscataway, NJ, USA, IEEE, pp 515–518

    Google Scholar 

  11. Ofner P, Schwarz A, Pereira J, Gernot R. Müller-Putz (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. In: PLoS ONE. https://doi.org/10.1371/journal.pone.0182578

  12. Aljalal M, Djemal R, Ibrahim S (2018) robot navigation using a brain computer interface based on motor imagery. J Med Biol Eng. https://doi.org/10.1007/s40846-018-0431-9

  13. Ang KK, Guan C (2013) Brain-computer interface in stroke rehabilitation. J Comput Sci Eng. https://doi.org/10.5626/jcse.2013.7.2.139

  14. Liu G-Q, Huang G, Zhu X-Y (2009) Application of CSP method in multi-class classification. Chin J Biomed Eng 28:935–938

    Google Scholar 

  15. Yang Y, Zeng M, Cheng J-S (2012) a new time-frequency analysis method-the local characteristic-scale decomposition. J Hunan Univ (Nat Sci) 39:35–39

    Google Scholar 

  16. Zhuo J, Yang G-Y, Xu T (2019) Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information. Chin J Med Phys 36(01):87–93

    Google Scholar 

  17. Cai D, Zhang C, He X (2010) Unsupervised feature selection for Multi-Cluster data. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, USA. https://doi.org/10.1145/1835804.1835848

  18. Liu A-M, Chen K, Liu Q, Ai Q-S, Xie Y, Chen A-Q (2017) Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata. In: Sensors, 17:2576

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51675389) and the Excellent Dissertation Cultivation Funds of Wuhan University of Technology (2018-YS-053). It is also supported by the Fundamental Research Funds for the Central Universities (WUT: 203109001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X. et al. (2021). Multiple Action Movement Control Scheme for Assistive Robot Based on Binary Motor Imagery EEG. In: Liang, Q., Wang, W., Liu, X., Na, Z., Li, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2020. Lecture Notes in Electrical Engineering, vol 654. Springer, Singapore. https://doi.org/10.1007/978-981-15-8411-4_101

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8411-4_101

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8410-7

  • Online ISBN: 978-981-15-8411-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics