Skip to main content

Arsenic Contamination of Groundwater and Its Mitigation Strategies

  • Chapter
  • First Online:
Water Pollution and Management Practices

Abstract

Arsenic contamination of environment is a serious issue that has grown in proportion over the years. Arsenic becomes enriched in groundwater due to several redox and biological processes that has been exacerbated due to human intervention. In India, arsenic contamination is widespread and has been reported from West Bengal, Uttar Pradesh, Bihar, Assam, and other states. Arsenic is a highly toxic element and can cause several ailments in humans including cancers. Hence, there is a need to provide safe water to people for drinking purposes and for other daily uses. In this regard, several physicochemical and biological methods are available, which need to be implemented for the purpose. A few of the important low cost and easy methods include precipitation, adsorption, and membrane processes-based filters. Apart from this, biological (bioremediation and phytoremediation) methods have been proposed. The present book chapter gives an overview of arsenic problem and its mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya SK, Chakraborty P, Lahiri S, Raymahashay BC, Guba S, Bhowmik A (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry – ATSDR (2000) Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Ahmad SA, Khan MH, Haque M (2018) Arsenic contamination in groundwater in Bangladesh: implications and challenges for healthcare policy. Risk Manag Healthc Policy 11:251

    Article  Google Scholar 

  • Ahmed MF (2001, May) An overview of arsenic removal technologies in Bangladesh and India. In: Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka, pp 5–7

    Google Scholar 

  • Ahmed MF (2003) Arsenic contamination: Bangladesh perspective. ITN-Bangladesh, Centre for Water Supply and Waste Management, Dhaka

    Google Scholar 

  • Akhter T, Abedin MZ, Basak JK, Akhter F (2015) Design and development of arsenic and iron removal unit for drinking water: a sustainable approach in environment. Asia Pac J Energy Environ 2:67–74

    Google Scholar 

  • Aldrich MV, Peralta-Videa JR, Parsons JG, Gardea-Torresdey JL (2007) Examination of arsenic (III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy. Sci Total Environ 379:249–255

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Article  Google Scholar 

  • Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD (2018) A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: a promising and feasible approach. Environ Exper Bot 150:115–126

    Article  CAS  Google Scholar 

  • Banerjee N, Nandy S, Kearns JK, Bandyopadhyay AK, Das JK, Majumder P, Basu S, Banerjee S, Sau TJ, States JC, Giri AK (2011) Polymorphisms in the TNF-α and IL10 gene promoters and risk of arsenic-induced skin lesions and other nondermatological health effects. Toxicol Sci 121:132–139

    Article  CAS  Google Scholar 

  • Bhattacharya P, Mukherjee A, Mukherjee AB (2013) Groundwater arsenic in India: source, distribution, effects and alternate safe drinking water sources. In: Reference module in earth systems and environmental sciences. Elsevier, Amsterdam, p 09342

    Google Scholar 

  • Borba RP, Figueiredo BR, Rawlins B, Matschullat J (2003) Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environ Geol 44:39–52

    Article  CAS  Google Scholar 

  • Bundschuh J, Litter M, Ciminelli VS, Morgada ME, Cornejo L, Hoyos SG, Hoinkis J, Alarcon-Herrera MT, Armienta MA, Bhattacharya P (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America–A critical analysis. Water Res 44:5828–5845

    Article  CAS  Google Scholar 

  • CGWB and NIH (2010) Mitigation and remedy of groundwater arsenic menace in India: a vision document. India, National Institute of Hydrology (NIH), Roorky and Central Ground Water Board (CGWB), Government of India

    Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Mukherjee SC, Dhar RK, Biswas BK, Chowdhury UK, Roy S, Sorif S (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016) Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 152:520–529

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Chatterjee A, Das D, Nayak B, Pal A, Chowdhury UK, Ahmed S, Biswas BK, Sengupta MK (2017) Groundwater arsenic contamination and its health effects in India. Hydrogeol J 25:1165–1181

    Article  CAS  Google Scholar 

  • Correia N, Carvalho C, Friões F, Araújo JP, Almeida J, Azevedo A (2009) Haemolytic anaemia secondary to arsenic poisoning: a case report. Cases J 2:7768

    Article  Google Scholar 

  • Cutler WG, Brewer RC, El-Kadi A, Hue NV, Niemeyer PG, Peard J, Ray C (2013) Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii. Sci Total Environ 442:177–188

    Article  CAS  Google Scholar 

  • Das B, Rahman MM, Nayak B, Pal A, Chowdhury UK, Mukherjee SC, Saha KC, Pati S, Quamruzzaman Q, Chakraborti D (2009) Groundwater arsenic contamination, its health effects and approach for mitigation in West Bengal, India and Bangladesh. Water Qual Expo Health 1:5–21

    Article  CAS  Google Scholar 

  • Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24(2):164–175

    Google Scholar 

  • Ferreccio C, González C, Milosavjlevic V, Marshall G, Sancha AM, Smith AH (2000) Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11:673–679

    Article  CAS  Google Scholar 

  • Gómez JJ, Lillo J, Sahún B (2006) Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environ Geol 50:1151–1170

    Article  CAS  Google Scholar 

  • Islam ABMR, Maity JP, Bundschuh J, Chen CY, Bhowmik BK, Tazaki K (2013) Arsenic mineral dissolution and possible mobilization in mineral–microbe–groundwater environment. J Hazard Mater 262:989–996

    Article  CAS  Google Scholar 

  • IWA (2016) Executive summary of arsenic contamination in the world. http://www.iwawaterwiki.org/xwiki/bin/view/Articles/ExecutiveSummaryofArsenicContaminationintheWorld

  • Jain J, Bajpai S, Gauba P (2016) Adverse Health effects of Arsenic toxicity. J Civil Eng Environ Technol 3:679

    Google Scholar 

  • Jones H, Visoottiviseth P, Bux MK, Földényi R, Kováts N, Borbély G, Galbács Z (2009) Arsenic pollution in Thailand, Bangladesh, and Hungary. In: Reviews of environmental contamination and toxicology. Arsenic pollution and remediation: an international perspective, vol 197. Springer, New York, pp 163–187

    Google Scholar 

  • Kabir A, Howard G (2007) Sustainability of arsenic mitigation in Bangladesh: results of a functionality survey. Int J Environ Health Res 17:207–218

    Article  Google Scholar 

  • Khan MA, Ho YS (2011) Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation. Asian J Chem 23:1889

    CAS  Google Scholar 

  • Khatri N, Tyagi S (2015) Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci 8:23–39

    Article  CAS  Google Scholar 

  • Kumar M, Yadav A, Ramanathan AL (2020) Arsenic contamination in environment, ecotoxicological and health effects, and bioremediation strategies for its detoxification. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 245–264

    Chapter  Google Scholar 

  • Ling S, Qin Z, Huang W, Cao S, Kaplan DL, Buehler MJ (2017) Design and function of biomimetic multilayer water purification membranes. Sci Adv 3(4):e1601939

    Article  CAS  Google Scholar 

  • Mazumder DG (2000) Diagnosis and treatment of chronic arsenic poisoning. United Nations synthesis report on arsenic in drinking water. http://www.who.int/water_sanitation_health/dqw/arsenicum4.pdf

  • McArthur JM, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  CAS  Google Scholar 

  • Milton AH, Smith W, Dear K, Ng J, Sim M, Ranmuthugala G, Lokuge K, Caldwell B, Rahman A, Rahman H, Shraim A (2007) A randomised intervention trial to assess two arsenic mitigation options in Bangladesh. J Environ Sci Health Part A 42:1897–1908

    Article  CAS  Google Scholar 

  • Mirlean N, Baisch P, Diniz D (2014) Arsenic in groundwater of the Paraiba do Sul delta, Brazil: an atmospheric source? Sci Total Environ 482:148–156

    Article  CAS  Google Scholar 

  • Mishra S, Dwivedi S, Kumar A, Chauhan R, Awasthi S, Tripathi RD, Mattusch J (2016) Current status of ground water arsenic contamination in India and recent advancements in removal techniques from drinking water. Int J Plant Environ 2:1–2

    Article  Google Scholar 

  • Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:67

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents-a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mosler HJ, Blöchliger OR, Inauen J (2010) Personal, social, and situational factors influencing the consumption of drinking water from arsenic-safe deep tubewells in Bangladesh. J Environ Manag 91:1316–1323

    Article  CAS  Google Scholar 

  • Nickson R, Sengupta C, Mitra P, Dave SN, Banerjee AK, Bhattacharya A, Basu S, Kakoti N, Moorthy NS, Wasuja M, Kumar M (2007) Current knowledge on the distribution of arsenic in groundwater in five states of India. J Environ Sci Health Part A 42:1707–1718

    Article  CAS  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview. Trace Metals Contaminant Environ 9:3–60

    Article  CAS  Google Scholar 

  • Oremland RS (2009) December. Arsenic as an energy source for microbial growth. In AGU Fall Meeting Abstracts

    Google Scholar 

  • Rahman MM, Naidu R, Bhattacharya P (2009) Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 31:9–21

    Article  CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards KS (2009) Arsenic pollution: a global synthesis. Wiley Blackwell, Chichester

    Book  Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J (2013) Arsenic in food chain and community health risk: a study in Gangetic West Bengal. Procedia Environ Sci 18:2–13

    Article  CAS  Google Scholar 

  • Shafiquzzaman M, Azam MS, Mishima I, Nakajima J (2009) Technical and social evaluation of arsenic mitigation in rural Bangladesh. J Health Popul Nutr 27:674

    Article  Google Scholar 

  • Shibasaki N, Lei P, Kamata A (2007) Evaluation of deep groundwater development for arsenic mitigation in western Bangladesh. J Environ Sci Health Part A 42:1919–1932

    Article  CAS  Google Scholar 

  • Shrestha R (2012) Arsenic contamination of groundwater in Nepal: good public health intention gone bad. Inquiries J 4(09):1–3

    Google Scholar 

  • Singh SK (2017) Conceptual framework of a cloud-based decision support system for arsenic health risk assessment. Environ Syst Decis 37:435–450

    Google Scholar 

  • Singh SK, Stern EA (2017) Global arsenic contamination: living with the poison nectar. Environ Sci Policy Sustain Dev 59:24–28

    Article  Google Scholar 

  • Singh SK, Vedwan N (2015) Mapping composite vulnerability to groundwater arsenic contamination: an analytical framework and a case study in India. Nat Hazards 75:1883–1908

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Sablok G, Deshpande TU, Suprasanna P (2015) Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways. Front Plant Sci 19(6):646. https://doi.org/10.3389/fpls.2015.00646

    Article  Google Scholar 

  • Sthiannopkao S, Kim KW, Sotham S, Choup S (2008) Arsenic and manganese in tube well waters of Prey Veng and Kandal Provinces, Cambodia. Appl Geochem 23:1086–1093

    Article  CAS  Google Scholar 

  • Tahura S, Shahidullah SM, Milton TRAH, Bhuiyan RH (2001) Evaluation of an arsenic removal household device: bucket treatment unit (BTU). Technologies for Arsenic Removal from Drinking Water:158–170

    Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  Google Scholar 

  • Upadhyay MK, Yadav P, Shukla A, Srivastava S (2018) Utilizing the potential of microorganisms for managing arsenic contamination: a feasible and sustainable approach. Front Environ Sci 6:24

    Article  Google Scholar 

  • USEPA (2013) Arsenic in drinking water. http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm

  • Wade TJ, Xia Y, Mumford J, Wu K, Le XC, Sams E, Sanders WE (2015) Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study. Environ Health 14:35

    Article  CAS  Google Scholar 

  • Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Natur Rev Mat 1:1–15

    Google Scholar 

  • WHO (2001) Environmental health criteria, 224, arsenic and arsenic compounds, 2nd edn. World Health Organization, Geneva, pp 385–392

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, vol 4. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2019) Safer water, better health. WHO, Geneva

    Google Scholar 

  • Ye WL, Khan MA, McGrath SP Zhao FJ (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159:3739–3743

    Article  CAS  Google Scholar 

  • Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A (2014) Arsenic and chronic kidney disease: a systematic review. Curr Environ Health Rep 1(3):192–207

    Article  CAS  Google Scholar 

Download references

Acknowledgement

SA is thankful to the Council of Scientific & Industrial Research for the award of Senior Research Fellowship [No. 31/08(332)/2017-EMR1]. RC is thankful to the Department of Science and Technology (DST) New Delhi, India for the award of DST-INSPIRE Junior/Senior Research Fellowship (No. DST/INSPIRE Fellowship/2013/321). RDT is thankful to CSIR, New Delhi for the Emeritus Scientist Scheme [No. 21(0978)/13/EMR-II].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awasthi, S., Chauhan, R., Dwivedi, S., Srivastava, S., Tripathi, R.D. (2021). Arsenic Contamination of Groundwater and Its Mitigation Strategies. In: Singh, A., Agrawal, M., Agrawal, S.B. (eds) Water Pollution and Management Practices. Springer, Singapore. https://doi.org/10.1007/978-981-15-8358-2_5

Download citation

Publish with us

Policies and ethics