Skip to main content

Ecosystem Responses to Pollution in the Ganga River: Key Issues to Address River Management

  • Chapter
  • First Online:
Book cover Water Pollution and Management Practices

Abstract

From over five decades, there has been a rapid increase in pollutant concentration in the Ganga River. Much of the debates about the rising pollution in the rivers have been focused on urban sewage input and its associated increase in biological oxygen demand (BOD). Here, we present an overview of explicit multifactor causation, ecosystem-level shifts, multiform determinants (nutrient stoichiometry, transparent exopolymeric particles (TEP), diatom dominance-diversity linkages, microbial extracellular enzymes (EE), ecological response index (ERI), and ecosystem feedbacks), and alternative response indicators to address shifts in ecosystem functions coupling human perturbations. Based on a critical analysis of available studies/data and emerging trends, we argue that anthropogenic influences on the Ganga River are far more severe than what is being predicted from short-term small-scale studies. At many locations, especially those located downstream of point sources, the river is overstepping its resilience as demonstrated by dissolved oxygen deficit at sediment-water interface and associated feedbacks (denitrification, sediment-P and sediment-metal release). Because in human-impacted rivers eutrophication and metal pollution generally occur simultaneously, the EE, ERI, and TEP-diatom linkages provide novel tools to assess how the human activities might impact ecological functioning and assimilation capacity of the Ganga River. These issues set the stage for understanding and assessing current and possible future changes on which the Ganga River management strategies can be keyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn CY, Joung SH, Yoon SK, Oh HM (2007) Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant. J Microbiol 45:98–104

    CAS  Google Scholar 

  • Alvarez-Vazquez MA, Prego R, Caetano M, De Una-Alvarez E, Doval M, Calvo S, Vale C (2017) Contributions of trace elements to the sea by small uncontaminated rivers: effects of a water reservoir and a wastewater treatment plant. Chemosphere 178:173–186

    Article  CAS  Google Scholar 

  • Ariyadej C, Tansakul R, Tansakul P, Angsupanich S (2004) Phytoplankton diversity and its relationships to the physico-chemical environment in the Banglang Reservoir, Yala Province. J Sci Technol 26:595–607

    CAS  Google Scholar 

  • Aufdenkampe A et al (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

    Article  Google Scholar 

  • Banks J, Ross DJ, Keough MJ (2012) Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment. Sci Total Environ 420:229–237

    Article  CAS  Google Scholar 

  • Bashir T, Khan A, Gautam P, Behera SK (2010) Abundance and prey availability assessment of Ganges River Dolphin (Platanista gangetica gangetica) in a stretch of upper Ganges River, India. Aquat Mamm 36:19–26

    Article  Google Scholar 

  • Bastviken D et al (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50

    Article  CAS  Google Scholar 

  • Bellmore R, Compton J, Brooks J et al (2018) Nitrogen inputs drive nitrogen concentrations in US streams and rivers during summer low flow conditions. Sci Total Environ 639:1349–1359

    Article  CAS  Google Scholar 

  • Bere T, Tundisi JG (2011) Diatom-based water quality assessment in streams influenced by urban pollution: effects of natural and two selected artificial substrates, São Carlos-SP, Brazil. Braz J Aquat Sci Technol 15:54–63

    Article  Google Scholar 

  • Bergstrom AK, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Chang Biol 12:635–643

    Article  Google Scholar 

  • Borges A et al (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642

    Article  CAS  Google Scholar 

  • Brady JP, Ayoko GA, Martens WN, Goonetilleke A (2015) Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ Monit Assess 187:306

    Article  Google Scholar 

  • Bristow LA, Callbeck CM, Larsen M, Altabet MA, Dekaezemacker J, Forth M, Gauns M, Glud RN, Kuypers MM, Lavik G (2017) N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nat Geosci 10:24–29

    Article  CAS  Google Scholar 

  • Brown RM, McClelland NI, Deininger RA, O’Connor MF (1972) A Water Quality Index – crashing the psychological barrier. In: Thomas WA (ed) Indicators of environmental quality. Environmental science research, vol 1. Springer, Boston

    Google Scholar 

  • Buat-Menard P, Chesselet R (1979) Variable influence of atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:398–411

    Article  Google Scholar 

  • Bureau of Indian Standards (BIS) (2012) Specification for drinking water. IS: 10500:2012. Revised (2012) Bureau of Indian Standards, New Delhi

    Google Scholar 

  • Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89

    Article  CAS  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369

    Article  CAS  Google Scholar 

  • Carstensen J et al (2014) Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management. Ambio 43:26–36

    Article  CAS  Google Scholar 

  • Central Pollution Control Board (CPCB) (2013) Pollution Assessment: River Ganga. Ministry of Environment and Forests, Govt. of India, Parivesh Bhawan, Delhi

    Google Scholar 

  • Central Pollution Control Board (CPCB) (2016) Conservation of water quality of Ganga River, CPCB. Ministry of Environment and Forest, Government of India

    Google Scholar 

  • Cole JJ et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Article  CAS  Google Scholar 

  • Conley DJ (1997) River contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42:774–777

    Article  CAS  Google Scholar 

  • Conley DJ, Kilham SS, Theriot E (1989) Differences in silica content between marine and freshwater diatoms. Limnol Oceanogr 34:205–213

    Article  CAS  Google Scholar 

  • Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F (2002) Hypoxia in the Baltic Sea and basin scale changes in phosphorus biogeochemistry. Environ Sci Technol 36:5315–5320

    Article  CAS  Google Scholar 

  • Correll DL, Jordan TE, Weller DE (2000) Dissolved silicate dynamics of the Rhode River watershed and estuary. Estuaries 23:188–196

    Article  CAS  Google Scholar 

  • Covitch AP et al (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775

    Article  Google Scholar 

  • Dai L, Korolev K, Gore J (2013) Slower recovery in space before collapse of connected populations. Nature 496:355–358

    Article  CAS  Google Scholar 

  • Davidson K, Gurney WSC (1999) An investigation of non-steady state algal growth II. Mathematical modelling of co-nutrient limited algal growth. J Plankton Res 21:839–858

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  Google Scholar 

  • Dodla SK, Wang JJ, DeLaune RD, Cook RL (2008) Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Sci Total Environ 407:471–480

    Article  CAS  Google Scholar 

  • Duhamel S, Dyhrman ST, Karl DM (2010) Alkaline phosphatase activity and regulation in the North Pacific subtropical gyre. Limnol Oceanogr 55:1414–1425

    Article  CAS  Google Scholar 

  • Duodu GO, Goonetilleke A, Ayoko GA (2016) Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut 219:1077–1091

    Article  CAS  Google Scholar 

  • Dwivedi S, Mishra S, Tripathi RD (2018) Ganga water pollution: a potential health threat to inhabitants of Ganga basin. Environ Int 117:327–338

    Article  CAS  Google Scholar 

  • Edokpa D, Evans M, Rothwell J (2015) High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition. Sci Total Environ 532:711–722

    Article  CAS  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    Article  CAS  Google Scholar 

  • Elser JJ et al (2000) Nutritional constraints in terrestrial and fresh water food webs. Nature 408:578–580

    Article  CAS  Google Scholar 

  • Elser JJ et al (2009) Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837

    Article  CAS  Google Scholar 

  • Eyre BD, Ferguson AJP (2009) Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. Hydrobiologia 629:137–146

    Article  CAS  Google Scholar 

  • Fontvieille DA, Outaguerouine A, Thevenot DR (1992) Fluorescein diacetate hydrolysis as a measure of microbial activity in aquatic systems: application to activated sludges. Environ Technol 13:531–540

    Article  CAS  Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390:65–67

    Article  CAS  Google Scholar 

  • Fu J et al (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109

    Article  CAS  Google Scholar 

  • Galloway JN et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gholizadeh MH, Melesse AM, Reddi L (2016) A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors (Basel) 16:1–43

    Article  CAS  Google Scholar 

  • Gilbert D, Sundby B, Gobeil C, Mucci A, Tremblay GH (2005) A seventy two year record of diminishing deep water oxygen in the St. Lawrence estuary: the Northwest Atlantic connection. Limnol Oceanogr 50:1654–1666

    Article  CAS  Google Scholar 

  • Gilpin LC, Davidson K, Roberts E (2004) The influence of changes in nitrogen: silicon ratios on diatom growth dynamics. J Sea Res 25:21–35

    Article  CAS  Google Scholar 

  • Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol 41:1514–1521

    Article  CAS  Google Scholar 

  • Håkanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hallquist M et al (2009) The formation, properties, and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

    Article  CAS  Google Scholar 

  • Higashino M, Gantzer CJ, Stefan HG (2004) Unsteady diffusional mass transfer at the sediment/water interface: theory and significance for SOD measurement. Water Res 38:1–12

    Article  CAS  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Cotter AM, Trebitz AS, Danz NP (2006) Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshw Biol 51:1670–1683

    Article  CAS  Google Scholar 

  • Hooper DU et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  CAS  Google Scholar 

  • Hu WF, Lo W, Chua H, Sin SN, Yu PHF (2001) Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong. Environ Int 26:369–375

    Article  CAS  Google Scholar 

  • Jaiswal D, Pandey J (2018) Impact of heavy metal on activity of some microbial enzymes in the riverbed sediment: ecotoxicological implications in the Ganga River (India). Ecotoxicol Environ Saf 150:104–115

    Article  CAS  Google Scholar 

  • Jaiswal D, Pandey J (2019a) An ecological response index for simultaneous prediction of eutrophication and metal pollution in large rivers. Water Res 161:423–438

    Article  CAS  Google Scholar 

  • Jaiswal D, Pandey J (2019b) Anthropogenically enhanced sediment oxygen demand creates mosaic of oxygen deficient zones in the Ganga River: implications for river health. Ecotoxicol Environ Saf 171:709–720

    Article  CAS  Google Scholar 

  • Jaiswal D, Pandey J (2019c) Investigations on peculiarities of land-water interface and its use as a stable test bed for accurately predicting changes in ecosystem responses to human perturbations: a sub-watershed scale study with the Ganga River. J Environ Manag 238:178–193

    Article  CAS  Google Scholar 

  • Jaiswal D, Pandey J (2019d) Benthic hypoxia in anthropogenically-impacted rivers provides positive feedback enhancing the level of bioavailable metals at sediment-water interface. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113643

  • Jaiswal D, Pandey J (2019e) Carbon dioxide emission coupled extracellular enzyme activity at land-water interface predict C-eutrophication and heavy metal contamination in Ganga River, India. Ecol Indic 99:349–364

    Article  CAS  Google Scholar 

  • Jaiswal D, Pandey J (2019f) Hypoxia and associated feedbacks at sediment-water interface as an early warning signal of resilience shift in an anthropogenically impacted river. Environ Res 178:108712

    Article  CAS  Google Scholar 

  • Jaiswal D, Siddiqui E, Verma K, Pandey J (2018) Carbon dioxide emission and its regulation at land-water interface downstream of a point source at Ganga River (India). Water Environ J 32:351–357

    Article  CAS  Google Scholar 

  • Jhingran AG, Ghosh KK (1978) The fisheries of the Ganga river system in the context of Indian aquaculture. Aquaculture 14:141–162

    Article  Google Scholar 

  • Khanna DR, Sarkar P, Gautam A, Bhutiani V (2007) Fish scales as bio-indicator of water quality of River Ganga. Environ Monit Assess 134:153–160

    Article  CAS  Google Scholar 

  • Lafont M (2001) A conceptual approach to the biomonitoring of freshwater: the ecological ambience system. J Limnol 60:17–24

    Article  Google Scholar 

  • Lata P, Ram S, Agrawal M, Shanker R (2009) Enterococci in river Ganga surface waters: propensity of species distribution, dissemination of antimicrobial-resistance and virulence-markers among species along landscape. BMC Microbiol 9:140–149

    Article  CAS  Google Scholar 

  • Liu JJ, Diao Z, Xu XR, Xie Q (2019) Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Sci Total Environ 666:894–901

    Article  CAS  Google Scholar 

  • Mackenzie BR, Hinrichsen HH, Plikshs M, Wieland K, Zezera AS (2000) Quantifying environmental heterogeneity: habitat size necessary for successful development of cod Gadus morhua eggs in the Baltic Sea. Mar Ecol Prog Ser 193:143–156

    Article  Google Scholar 

  • MacPherson TA, Cahoon LB, Mallin MA (2007) Water column oxygen demand and sediment oxygen flux: patterns of oxygen depletion in tidal creeks. Hydrobiologia 586:235–248

    Article  CAS  Google Scholar 

  • Makulla A, Sommer U (1993) Relationships between resource ratios and phytoplankton species composition during spring in five North German lakes. Limnol Oceanogr 38:846–856

    Article  CAS  Google Scholar 

  • Malik A, Qadri SA, Musarrat J, Ahmad M (1995) Studies on the water quality of River Ganga at Fatehgarh and Kannauj, U.P., India. Environ Toxicol Water Qual 10:91–95

    Article  CAS  Google Scholar 

  • McCreary JP Jr, Yu Z, Hood RR, Vinaychandran PN, Furue R, Ishida A, Richards KJ (2013) Dynamics of the Indian-Ocean oxygen minimum zones. Prog Oceanogr 112–113:15–37

    Article  Google Scholar 

  • Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293

    Article  CAS  Google Scholar 

  • Miralto A et al (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    Article  CAS  Google Scholar 

  • Mishra S, Kumar A, Shukla P (2016) Study of water quality in Hindon River using pollution index and environmetrics, India. Desalin Water Treat 57:19121–19130

    Article  CAS  Google Scholar 

  • Morelli G, Gasparon M (2014) Metal contamination of estuarine intertidal sediments of Moreton Bay, Australia. Mar Pollut Bull 89:435–443

    Article  CAS  Google Scholar 

  • Müller G (1969) Index of Geoaccumulation in sediments of the Rhine River. J Geo 2:108–118

    Google Scholar 

  • Muscio C (2002) The diatom pollution tolerance index: assigning tolerance values. City of Austin- Water Protection and Development Review Department

    Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, Inc, New York, pp 1–34

    Google Scholar 

  • Negi RK, Rajput A (2013) Impact of pulp and paper mill effluents on phytoplanktonic community structure in Ganga River at Bijnor (UP), India. J Entomol Zool Stud 1:70–73

    Google Scholar 

  • Nemerow NL (1991) Stream, lake, estuary, and ocean pollution. Van Nostrand Reinhold, New York

    Google Scholar 

  • Nwachukwu OI, Pulford ID (2011) Microbial respiration as an indication of metal toxicity in contaminated organic materials and soil. J Hazard Mater 185:1140–1147

    Article  CAS  Google Scholar 

  • Oliver TH et al (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30:673–684

    Article  Google Scholar 

  • Pacheco F, Roland F, Downing J (2013) Eutrophication reverses whole-lake carbon budgets. Inland Waters 4:41–48

    Article  CAS  Google Scholar 

  • Paerl HW et al (2003) Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiol Ecol 46:233–246

    Article  CAS  Google Scholar 

  • Pan Y, Stevenson RJ, Hill BH, Herlihy AT, Collins GB (1996) Using diatoms as indicators of ecological conditions in lotic systems – a regional assessment. J North Am Benthol Soc 15:481–495

    Article  Google Scholar 

  • Pandey J (2011) The influence of atmospheric deposition of pollutants on cross–domain causal relationships for three tropical freshwater lakes in India. Lakes Reserv Res Manage 16:113–121

    Article  CAS  Google Scholar 

  • Pandey U (2013) The influence of DOC trends on light climate and periphyton biomass in the Ganga River, Varanasi, India. Bull Environ Contam Toxicol 90:143–147

    Article  CAS  Google Scholar 

  • Pandey J, Pandey U (2009) Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environ Monit Assess 148:61–74

    Article  CAS  Google Scholar 

  • Pandey U, Pandey J (2013) Impact of DOC trends resulting from changing climatic extremes and atmospheric deposition chemistry on periphyton community of a freshwater tropical lake of India. Biogeochemistry 112:537–553

    Article  CAS  Google Scholar 

  • Pandey J, Yadav A (2015) The changing state of N: P: Si stoichiometry in Ganga River: possible implications for production and fate of phytoplankton biomass. Water 6:91–99

    Google Scholar 

  • Pandey J, Yadav A (2017) Alternative alert system for Ganga river eutrophication using alkaline phosphatase as a level determinant. Ecol Indic 82:327–343

    Article  CAS  Google Scholar 

  • Pandey J, Shubhashish K, Pandey R (2010) Heavy metal contamination of Ganga River at Varanasi in relation to atmospheric deposition. Tropic Ecol 51:63–71

    Google Scholar 

  • Pandey J, Singh AV, Singh A, Singh R (2013) Impacts of changing atmospheric deposition chemistry on nitrogen and phosphorus loading to Ganga River (India). Bull Environ Contam Toxicol 91:184–190

    Article  CAS  Google Scholar 

  • Pandey J, Pandey U, Singh AV (2014a) Impact of changing atmospheric deposition chemistry on carbon and nutrient loading to Ganga River: integrating land–atmosphere–water components to uncover cross-domain carbon linkages. Biogeochemistry 14:179–198

    Article  CAS  Google Scholar 

  • Pandey J, Pandey U, Singh AV (2014b) The skewed N: P stoichiometry resulting from changing atmospheric deposition chemistry drives the pattern of ecological nutrient limitation in the Ganges. Curr Sci 107:956–958

    CAS  Google Scholar 

  • Pandey J, Singh AV, Singh R (2015a) Atmospheric deposition coupled terrestrial export of organic carbon in Ganga River (India): linking cross-domain carbon transfer to river DOC. Int Aquat Res 7:273–285

    Article  Google Scholar 

  • Pandey J, Yadav A, Singh R (2015b) The N: P: Si stoichiometry and relative abundance of diatoms in Ganga River. Br J Appl Sci Technol 9:137–147

    Article  Google Scholar 

  • Pandey J, Pandey U, Singh AV, Tripathi S, Mishra V (2016a) Atmospheric N and P deposition in the Ganges Basin. Curr Sci 110:974–976

    Google Scholar 

  • Pandey J, Tripathi S, Pandey U (2016b) Anthropogenically induced shifts in N: P: Si stoichiometry and implications in Ganga River. Air Soil Water Res 9:35–43

    Article  CAS  Google Scholar 

  • Pandey U, Pandey J, Singh AV, Mishra A (2017) Anthropogenic drivers shift diatom dominance–diversity relationships and transparent exopolymeric particles production in River Ganga: implication for natural cleaning of river water. Curr Sci 113:959–964

    Article  Google Scholar 

  • Pandey J, Jaiswal D, Pandey U (2019) Point source-driven seasonal hypoxia signals habitat fragmentation and ecosystem change in River Ganga. Curr Sci 117:1947–1949

    Google Scholar 

  • Passow U, Shipe RF, Murray A, Pak DK, Brzezinski MA, Alldredge AL (2001) The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res 21:327–346

    Article  Google Scholar 

  • Patra P et al (2013) The carbon budget of South Asia. Biogeosciences 10:513–527

    Article  Google Scholar 

  • Pearson CE, Ormerod SJ, Symondson WO, Vaughan IP (2016) Resolving large-scale pressures on species and ecosystems: propensity modelling identifies agricultural effects on streams. J Appl Ecol 53:408–417

    Article  Google Scholar 

  • Peterson CG, Stevenson RJ (1992) Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73:1445–1461

    Article  Google Scholar 

  • Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130

    Article  CAS  Google Scholar 

  • Ponader KC, Potapova MG (2007) Diatoms from the genus Achnanthidium in flowing waters of the Appalachian Mountains (North America): ecology, distribution and taxonomic notes. Limnologica – Ecol Manage Inland Waters 37:227–241

    Article  Google Scholar 

  • Potapova M, Charles DF (2003) US Rivers in relation to conductivity and ionic composition. Freshw Biol 48:1311–1328

    Article  CAS  Google Scholar 

  • Potapova MG, Charles DF, Ponader KC, Winter DM (2004) Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiology 517:25–41

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Wiseman WJ (2001) Hypoxia in the Gulf of Mexico. J Environ Qual 30:320–329

    Article  CAS  Google Scholar 

  • Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Rao RJ (2001) Biological resources of Ganga River, India. Hydrobiologia 458:159–168

    Article  Google Scholar 

  • Raymond P et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  CAS  Google Scholar 

  • Reddy B, Pandey J, Dubey SK (2019) Assessment of environmental gene tags linked with carbohydrate metabolism and chemolithotrophy associated microbial community in River Ganga. Gene 704:31–41

    Article  CAS  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Rejsek K, Formanek P, Pavelka M (2008) Estimation of protease activity in soils at low temperatures by case in amendment and with substitution of buffer by demineralized water. Amino Acids 35:411–417

    Article  CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  CAS  Google Scholar 

  • Riebesell U et al (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548

    Article  CAS  Google Scholar 

  • Rimet F, Bouchez A (2012) Biomonitoring river diatoms: implications of taxonomic resolution. Ecol Indic 15:92–99

    Article  Google Scholar 

  • Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681–1689

    Article  CAS  Google Scholar 

  • Satyamurthy N (2017) An obsession with numbers: quantifying quality. Curr Sci 113:7–8

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  Google Scholar 

  • Scheffer M et al (2009) Early-warning signals for critical transitions. Nature 461:53–59

    Article  CAS  Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in the soil and litter. Appl Environ Microbiol 43:1256–1261

    Article  Google Scholar 

  • Seth RN, Katiha PK (2003) Riverine fishing methods with special reference to catfishes Aorichthys seenghala (Sykes) and Aorichthys aor (Ham.). Ind J Fish 50:125–130

    Google Scholar 

  • Siddiqui E, Pandey J (2019a) Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04495-6

  • Siddiqui E, Pandey J (2019b) Temporal and spatial variations in carbon and nutrient loads, ion chemistry and trophic status of the Ganga River: a watershed-scale study. Limnology 20:255–266

    Article  Google Scholar 

  • Siddiqui E, Verma K, Pandey U, Pandey J (2019a) Metal contamination in seven tributaries of the Ganga River and assessment of human health risk from fish consumption. Arc Environ Contam Toxicol 77:263–278

    Article  CAS  Google Scholar 

  • Siddiqui E, Pandey J, Pandey U, Mishra V, Singh AV (2019b) Integrating atmospheric deposition-driven nutrients (N and P), microbial and biogeochemical processes in the watershed with carbon and nutrient export to the Ganga River. Biogeochemistry 147(2):149–178. https://doi.org/10.1007/s10533-019-00634-w56789

    Article  Google Scholar 

  • Singh AV, Pandey J (2014) Heavy metals in the mid-stream of the Ganges River: spatiotemporal trends in a seasonally dry tropical region (India). Water Int 39:504–516

    Article  Google Scholar 

  • Singh R, Pandey J (2019) Non-point source-driven carbon and nutrient loading to Ganga River (India). Chem Ecol 35:344–360

    Article  CAS  Google Scholar 

  • Singh D, Sharma RC (1998) Biodiversity, ecological status and conservation priority of the fish of the River Alaknanda, a parent stream of the River Ganges (India). Aquatic conservation: marine and freshwater ecosystems. Aquat Conser Mar Freshw Ecosys 8:761–772

    Article  Google Scholar 

  • Singh AK, Pathak AK, Lakra WS (2010) Invasion of an exotic fish—common carp, Cyprinus carpio L. (Actinopterygii: Cypriniformes: Cyprinidae) in the Ganga River, India and its impacts. Acta Ichthyol Piscat 40:11–19

    Article  Google Scholar 

  • Singh VK, Chaturvedi A, Shukla S, Gautam A (2013) Bacterial surveillance associated with water from River Ganga. Trends Biosci 6:802–804

    Google Scholar 

  • Singh A, Tiwari V, Mohan J (2014) Chroococcales in River Ganga at Jajmau Ghat, Kanpur. Trop Plant Res 1:28–30

    Google Scholar 

  • Sinsabaugh RL, Linkins AE (1990) Enzymic and chemical analysis of particulate organic matter from a boreal river. Freshw Biol 23:301–309

    Article  CAS  Google Scholar 

  • Sinsabaugh RL et al (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    Article  Google Scholar 

  • Sinsabaugh RL, Hill BH, Shah JJF (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798

    Article  CAS  Google Scholar 

  • Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180

    Article  CAS  Google Scholar 

  • Stark J, Riddle M, Smith S (2004) Influence of an Antarctic waste dump on recruitment to nearshore marine soft-sediment assemblages. Mar Ecol Prog Ser 276:53–70

    Article  Google Scholar 

  • Sterner RW, Classen J, Lampert W, Weisse T (1998) Carbon: phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150

    Article  Google Scholar 

  • Tare V, Yadav AVS, Bose P (2003) Analysis of photosynthetic activity in the most polluted stretch of river Ganga. Water Res 37:67–77

    Article  CAS  Google Scholar 

  • Tavernini S, Pierobon E, Viaroli P (2011) Physical factors and dissolved reactive silica affect phytoplankton community structure and dynamics in a lowland eutrophic river (Po River, Italy). Hydrobiologia 669:213–225

    Article  CAS  Google Scholar 

  • Teubner KD, Dokulil M (2002) Ecological stoichiometry of TN: TP: SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages. Arch Hydrobiol 154:625–646

    Article  Google Scholar 

  • Tipping E et al (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci Proc Impacts 16:1608–1617

    Article  CAS  Google Scholar 

  • Tomilson DL, Wilson J, Harris CR, Jeffrey DW (1980) Problem in assessment of heavy metals in estuaries and the formation of pollution index. Helgol Wiss Meeresunlter 33:566–575

    Article  Google Scholar 

  • Trivedi RC (2010) Water quality of the Ganga River – an overview. Aquat Ecosyst Health Manag 13:347–351

    Article  CAS  Google Scholar 

  • Trobajo R, Rovira L, Ector L, Wetzel CE, Kelly M, Mann DG (2013) Morphology and identity of some ecologically important small Nitzschia species. Diatom Res 28:37–59

    Article  Google Scholar 

  • Turley MD, Bilotta GS, Chadd RP, Extence CA, Brazier RE, Burnside NG, Pickwell AGG (2016) A sediment-specific family-level biomonitoring tool to identify the impacts of fine sediment in temperate rivers and streams. Ecol Indic 70:151–165

    Article  Google Scholar 

  • Turner RE, Rabalais NN, Justic D, Dortch Q (2003) Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64:297–317

    Article  CAS  Google Scholar 

  • Verma K, Pandey J (2019) Heavy metal accumulation in surface sediments of the Ganga River (India): speciation, fractionation, toxicity, and risk assessment. Environ Monit Assess 191:414. https://doi.org/10.1007/s10661-019-7552-7

    Article  CAS  Google Scholar 

  • Verma K, Pandey J, Siddiqui E (2019) Heavy metal pollution in the Ganga River enhances carbon storage relative to flux. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-019-02761-4

  • Vicente-Martorell JJ, Galindo-Riaño MD, García-Vargas M, Granado-Castro MD (2009) Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. J Hazard Mater 162:823–836

    Article  CAS  Google Scholar 

  • Villnäs A, Norkko J, Lukkari K, Hewitt J, Norkko A (2012) Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PLoS One 7:e44920

    Article  CAS  Google Scholar 

  • Walsh G, Wepener V (2009) The influence of land use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water SA 35:579–594

    Article  CAS  Google Scholar 

  • Wardle DA (1993) Response of microbial biomass and metabolic quotient to leaf litter succession in some New Zealand forest and scrubland ecosystem. Funct Ecol 7:346–355

    Article  Google Scholar 

  • Xu L, Wang T, Wang J, Lu A (2017) Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere 173:61–68

    Article  CAS  Google Scholar 

  • Yadav A, Pandey J (2017a) Contribution of point sources and non-point sources to nutrient and carbon loads and their influence on the trophic status of the Ganga River at Varanasi, India. Environ Monit Assess 189:475–493

    Article  CAS  Google Scholar 

  • Yadav A, Pandey J (2017b) Water quality interaction with alkaline phosphatase in the Ganga River: implications for river health. Bull Environ Contam Toxicol 99:75–82

    Article  CAS  Google Scholar 

  • Zhang C et al (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    Article  CAS  Google Scholar 

  • Zhang Z, Juying L, Mamat Z, Qingfu Y (2016) Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol Environ Saf 126:94–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge CSIR, New Delhi, India, for financial report as fellowship to DJ.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaiswal, D., Pandey, U., Pandey, J. (2021). Ecosystem Responses to Pollution in the Ganga River: Key Issues to Address River Management. In: Singh, A., Agrawal, M., Agrawal, S.B. (eds) Water Pollution and Management Practices. Springer, Singapore. https://doi.org/10.1007/978-981-15-8358-2_10

Download citation

Publish with us

Policies and ethics